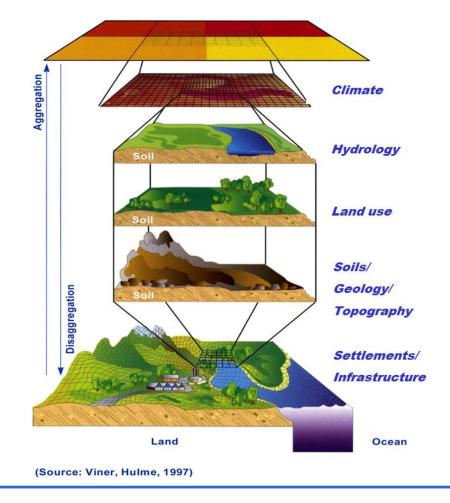
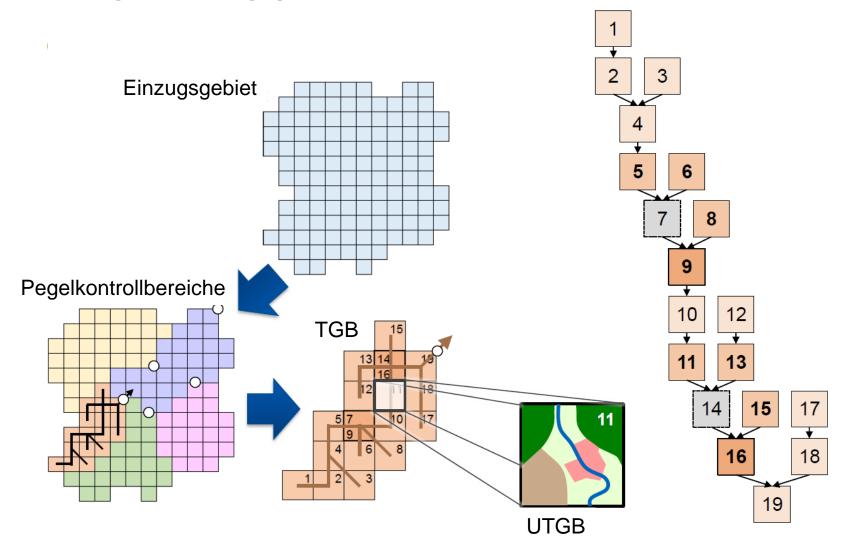

Wasserhaushaltsmodell LARSIM

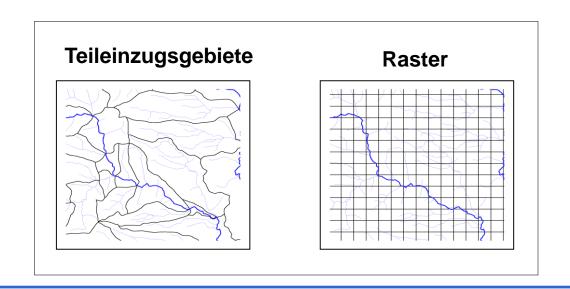

Vorgehen beim Modellaufbau eines Wasserhaushaltsmodells

Kai Gerlinger
HYDRON Ingenieurgesellschaft für Umwelt und Wasserwirtschaft
Juni 2020



LARSIM Modellvernetzung

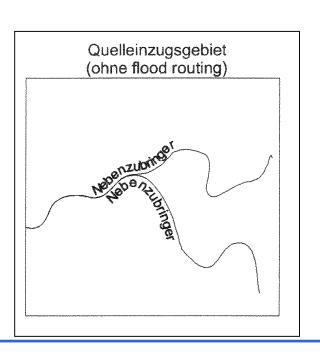
Unterteilung des Einzugsgebiets in Modellelemente

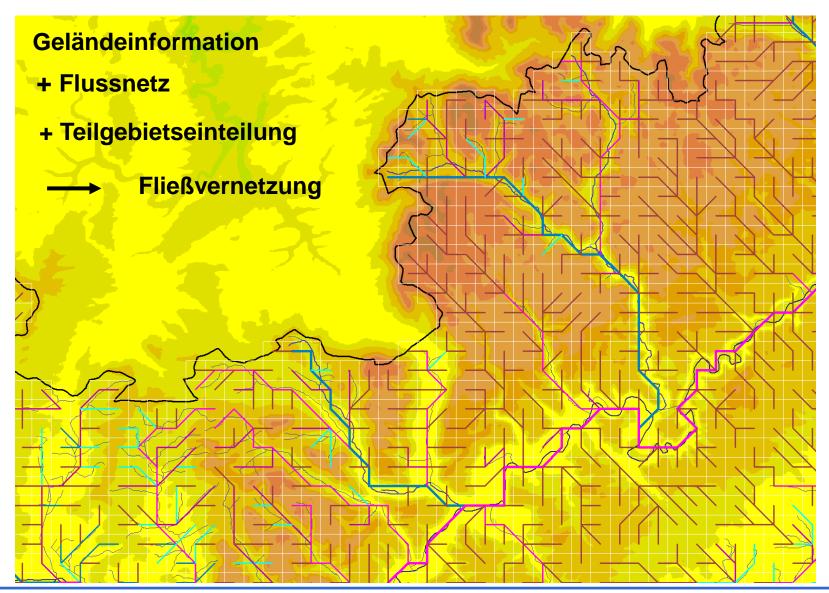


Disse & Mitterer 2017

Wahl der Modellelemente:

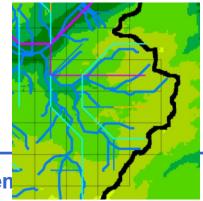
- Teileinzugsgebiete (Grenzen der Modellelemente entsprechend naturräumlicher Gegebenheiten, Flächen der Modellelemente sind unterschiedlich groß)
- Rasterflächen (einheitliche Gebietsunterteilung, Flächen der Modellelemente sind identisch groß)
- Bei beiden Varianten ist das prinzipielle Vorgehen zur Erstellung der Modellstruktur gleich.




Modellelementtypen in LARSIM:

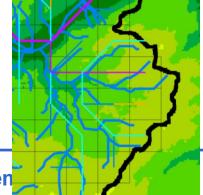
- Zwischeneinzugsgebiet: häufigstes Modellelement, bestehend aus einem Teilgebiet mit einer Gewässerteilstrecke (Hauptvorfluter bzw. maßgebliche Gewässerteilstrecke in der Rasterfläche, mit Flood-Routing-Berechnung).
- Quelleinzugsgebiet: In Einzugsgebieten ohne Zufluss aus anderen Gebieten gibt es keinen durchquerenden Flusslauf (daher keine Ermittlung gerinnespezifischer Daten notwendig, ohne Flood-Routing-Berechnung).

Vernetzung der Modellelemente:

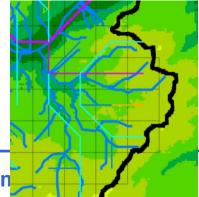

- Die Nachbildung des realen Flussnetzes im Modell (Vernetzung der Modellelemente) wird durch eine Verschneidung des Flussnetzes mit dem Modellelementen ermittelt.
- Dabei repräsentiert ein Modellelement nur jeweils eine Gewässerteilstrecke eines Flusses.
- Beim Auftreten mehrerer Flussläufe in einem Modellelement wird nur der Flusslauf mit dem größten Einzugsgebiet berücksichtigt, so dass alle Hauptflüsse durchgängig vernetzt werden konnten.
- Für jedes Modellelement wird eine Abflussrichtung festgelegt, die (sofern es eine entsprechende Nachbarfläche gibt) einer der acht Haupthimmelsrichtungen (Süd, Südost, Ost, Nordost, ...) entspricht.

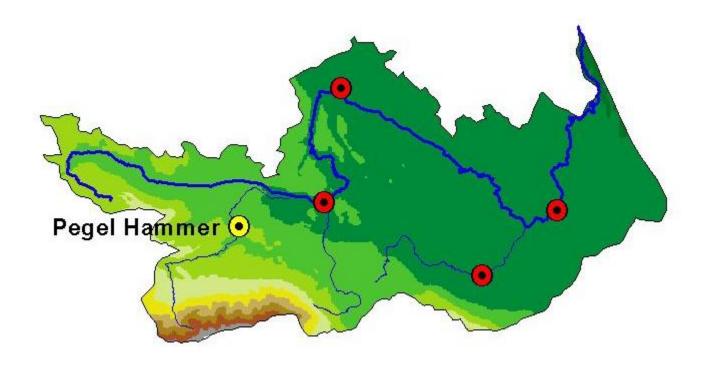
 Dabei kann das reale Gewässernetz nur schematisiert, d.h. vereinfacht nachgebildet werden.

Vernetzung der Modellelemente:


- In einigen Fällen sind auch mehrere, alternative Nachbildungen des realen Flussverlaufes möglich (insbesondere bei Rasterflächen, innerhalb derer Flüsse in den Randbereichen der Rasterfläche verlaufen oder z. T. die Flussmäander auch aus der Rasterfläche herausreichen).
- Daher ist bei einer programmunterstützten Vernetzung der Modellelemente ein Vergleich mit Kartenmaterial empfehlenswert.

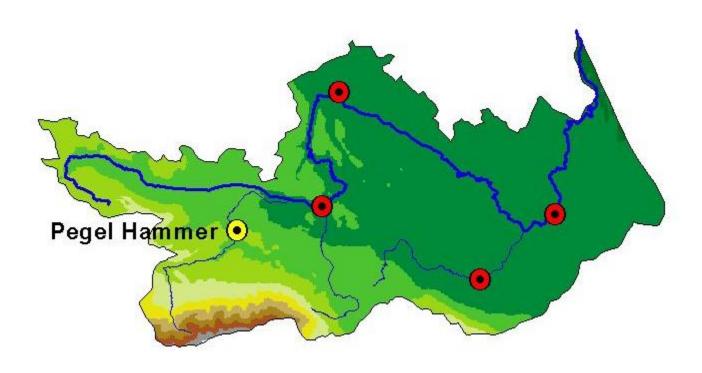
Vernetzung der Modellelemente:


- Eine Rasterfläche kann Zuflüsse aus bis zu sieben benachbarten Flächen erhalten.
- Da im Abarbeitungsschema des Flussgebietsmodells für jede Teilfläche nur maximal zwei Zuflüsse von Nachbarflächen definierbar sind, sind beim Modellaufbau ggf. fiktive Berechnungsknoten (sogenannte Nullelemente) einzufügen.
- Diese Zuflüsse werden modelltechnisch dann nicht direkt an einem gemeinsamen Mündungspunkt zusammengeführt, sondern fließen nacheinander mit fiktiven Mündungsabständen von jeweils einem Meter zusammen.


Vernetzung der Modellelemente:

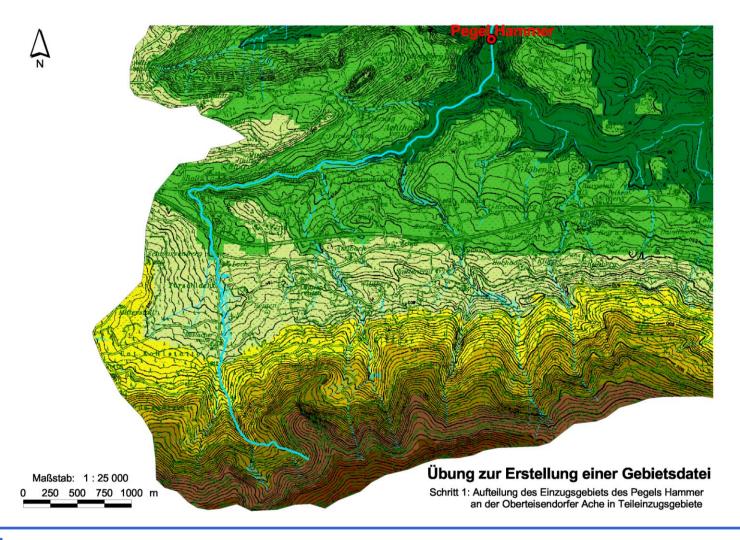
- Die Systematik der Berechnungsreihenfolge orientiert sich an
 - der Linienführung des Flussnetzes,
 - der Entfernung der jeweiligen Gewässerteilstrecken vom Auslass des Untersuchungsgebiets und
 - an der Größe der jeweiligen Einzugsgebiete bei seitlichen Zuflüssen.

Beispiel: Teilgebiet der Sur im Südosten Bayerns

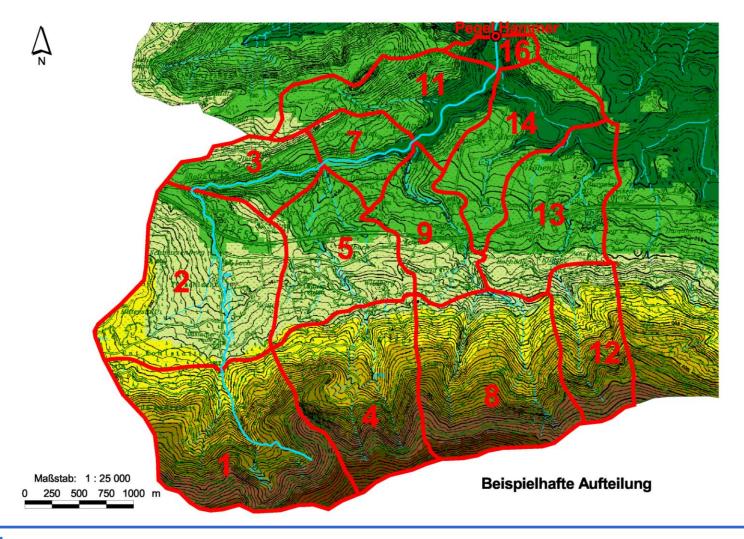


Beispiel: Teilgebiet der Sur im Südosten Bayerns

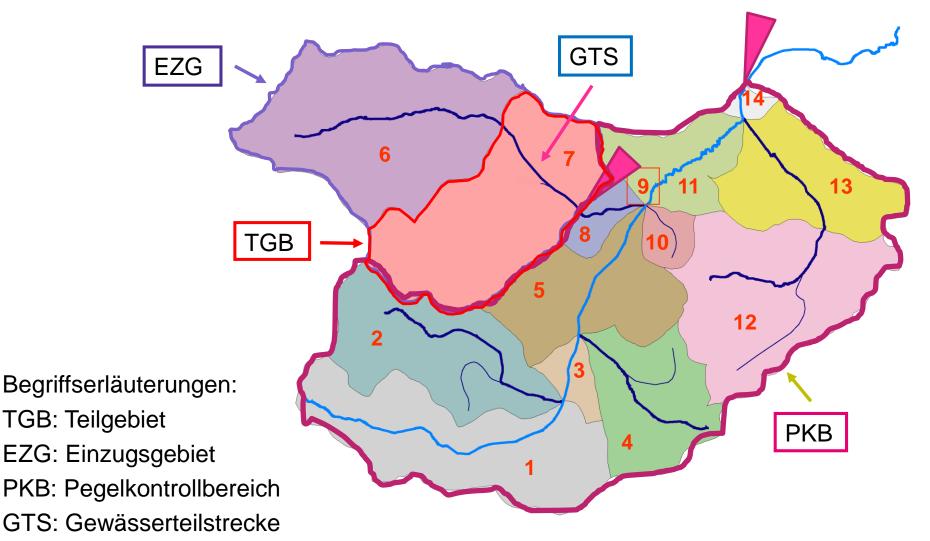
Ziel: Einteilung des Einzugsgebiets bis zum Pegel Hammer in hydrologisch


und modelltechnisch sinnvolle Teilgebiete und Festlegung der LARSIM-

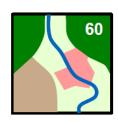
Nummerierung.

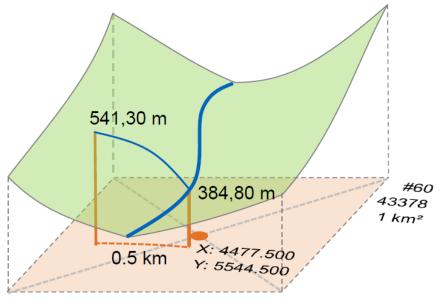


Beispiel: Teilgebiet der Sur im Südosten Bayerns

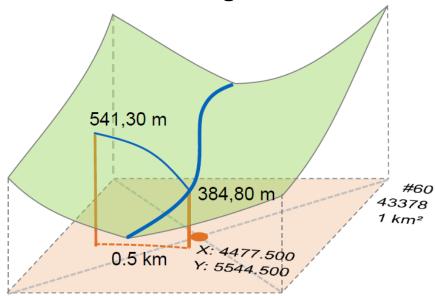


Beispiel: Teilgebiet der Sur im Südosten Bayerns



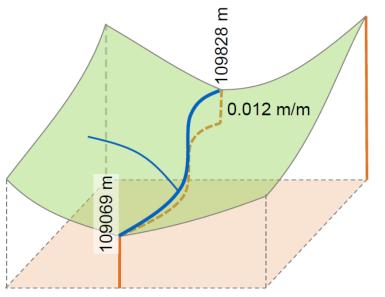

Beispiel für den Modellaufbau:

Angaben zum Modellelement in der Datei <tape12>



*	*															
*	Ges	amtes	Einz	zugsge	ebiet	[qkm]		= 53.	00							
*	* Gerinnebildender Abfluss [cbm/s] = 12.64															
	60	43378			1.000	0.500		54:	541.300		1.800	447	7.500	554	1	
	60	10	09828	8 1080		0.	0.01238 0.9		0.97		3.65		0.00		2	
	60	3.65		3.65		1.76		100.00		100.00			4.00		3a	
	60	28.05		20.00		20.00									3b	
	60	0	17	0	0	0	0	0	0	50	0	0	11	6	0	4a
	60	16	0													4b
	60	0 0 138 0 0		0	0	0	0	139	0	0	143	143	0	5a		
	60	120	0													5b

Angaben zum Modellelement in der Datei <tgb.dat>



Disse & Mitterer 2017

TGB		NRFLV	NRFLV FT TAL		НОТ	HUT	X	Υ	KMO	KMU	GEF	
	60	43378	1	0.5	541.3	381.8	4477500	5544500	109828	108069	0.01238	

Angaben zum Modellelement in der Datei <tape12>

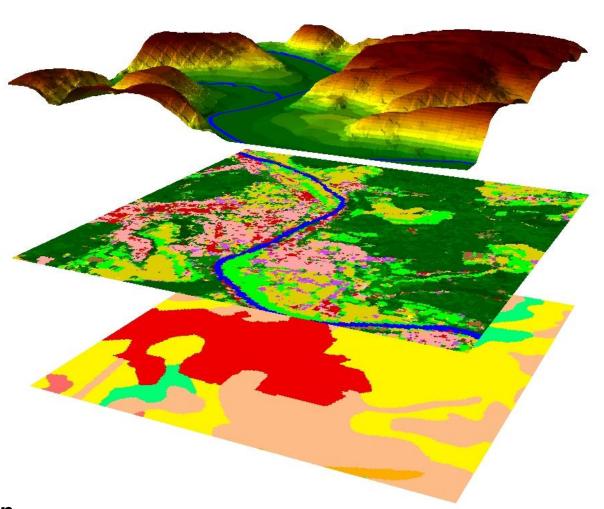


*															
* Ges	* Gesamtes Einzugsgebiet [qkm] = 53.00														
* Gerinnebildender Abfluss [cbm/s] = 12.64															
60	43378			1.000		0.500	541.30		381.800		4477.500		5544.500		1
60	109828		1	08069	0.	01238		0.97	7 3.65		0.00		0.00		2
60	3.65			3.65		1.76		00.00	1	100.00		4.00		4.00	
60	2	28.05	2	20.00		20.00								3b	
60	0	17	0	0	0	0	0	0	50	0	0	11	6	0	4a
60	16	0													4b
60	0	138	0	0	0	0	0	0	139	0	0	143	143	0	5a
60	120	0													5b

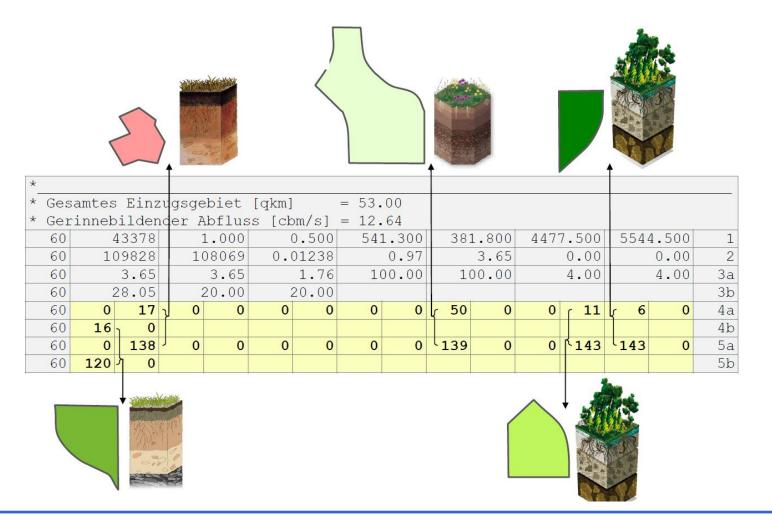
Angaben zum Modellelement in der Datei <tgb.dat>

Disse & Mitterer 2017

TGB	NRFLV FT TAL		TAL	HOT	HUT	X	Υ	KMO	KMU	GEF	
60	43378	1	0.5	541.3	381.8	4477500	5544500	109828	108069	0.01238	

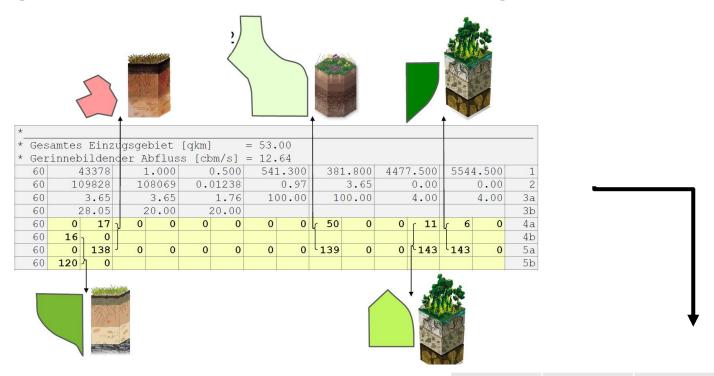

Verschneidung der Modellelemente mit den Landnutzungs- und Bodendaten:

 Digitales Geländemodell, Flussnetz


Landnutzung

 Bodeneigenschaften (nutzbare Feldkapazität)

Zudem: Gerinneinformation


Angaben zum Modellelement in der Datei <tape12>

Angaben zum Modellelement in der Datei <utgb.dat>

TGB		UTGB	FTanteil		Wm	LN	
	60	1		17	138		2
	60	2		50	139		9
	60	3	3	11	143		12
	60	4		6	143		13
	60	5	5	16	120		15

Angaben zum Modellelement in der Datei <utgb.dat> (erweiterte Bodenparameter und dynamische Infiltration)

TGB	UTGB	LN	F	Flaeche nFl	K	LK I	КарА	VDB	InfM	VF	nFKVol Ll	KVol	ks	wsf	MPdi	N	//Pla T	Rti	AuGr	SchrGr
	1	1	9	0.707	11	9	0	1	-99	-99	22	17	4	1	40 1	00	50	49	41	3
	1	2	12	0.293	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
	2	1	9	0.115	11	9	0	1	-99	-99	22	17	4	1	40 1	00	50	49	41	3
	2	2	12	0.885	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
	3	1	12	1.000	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
	4	1	9	0.006	11	9	0	1	-99	-99	22	17	4	1	40 1	00	50	49	41	
	4	2	12	0.994	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
	5	1	9	0.003	11	9	0	1	-99	-99	22	17	4	1	40 1	00	50	49	41	3
	5	2	11	0.075	325	160	0.21	0.195	-99	-99	32	16		6	200 2	200	30	0	0	
	5	3	12	0.922	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
	6	1	9	0.078	11	9	0	1	-99	-99	22	17	4	1	40 1	00	50	49	41	3
	6	2	11	0.178	325	160	0.21	0.195	-99	-99	32	16		6	200 2	200	30	0	0	0
	6	3	12	0.744	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
	7	1	9	0.029	11	9	0	1	-99	-99	22	17	4	1	40 1	00	50	49	41	3
	7	2	12	0.935	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
	7	3	14	0.036	86	61	0	0.408	-99	-99	29	21	3	7	35 1	50	30	28	50	5
	8	1	9	0.290	11	9	0	1	-99	-99	22	17	4	1	40 1	00	50	49	41	3
	8	2	12	0.710	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
1	0	1	9	0.347	11	9	0	1	-99	-99	22	17	4	1	40 1	00	50	49	41	3
1	0	2	12	0.653	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
1	1	1	5	0.311	1	200	0	1	-99	-99	-99	-99	-9	9	-99	-99	-99	-99	-99	-99
1	1	2	9	0.483	11	9	0	1	-99	-99	22	17	4	1	40 1	00	50	49	41	3
1	1	3	12	0.206	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
1	2	1	12	0.994	86	61	0	0.408	-99	-99	29	21	3	7	35	75	30	28	50	5
1	2	2	14	0.006	86	61	0	0.408	-99	-99	29	21	3	7	35	50	30	28	50	5
1	3	1	9	0.013	11	9	0	1	-99	-99	22	17	4	1	40	00	50	49	41	3
1	3	2	9	0.001	165	140	0	0.191	-99	-99	25	6		4	92	00	80	98	56	5
1	3	3	10	0.029	187	55	0	0.22	-99	-99	22	8		7	73 1	00	80	119	55	6

Literatur

 Disse M. & Mitterer J. (2017): Flood Risk and Flood Management – Exercise. Vorlesungsunterlagen TU München

