Simulation des Wasserhaushalts für die Einzugsgebiete der Trinkwassertalsperren Große Dhünn (NRW) und Passaúna (Paraná, Brasilien)

Julia Krumm, Ingo Haag HYDRON GmbH, Karlsruhe

Internationaler LARSIM-Anwenderworkshop 2019 19./20. März 2019 in Wiesbaden

Gefördert durch das BMBF

Projektüberblick MuDak-WRM

MuDak-WRM: Multidisciplinary data acquisition as key for a globally applicable water resources management

Hintergrund und Gesamt-Fragestellung:

- Weltweit zunehmende Bedeutung von Trinkwassertalsperren (für SDG 6)
- "Druck" auf Trinkwassertalsperren:
 - Eutrophierung (Nährstoffeintrag)
 - Siedlungsdruck im EZG
 - Klimawandel (Trockenheit)
- → Multidisziplinärer Beitrag zum Management von Trinkwasser-Talsperren und deren EZG:
 - Werkzeuge, Modelle, Monitoringstrategien
 - Möglichst "global" übertragbar und skalierbar
- → Am Beispiel der Talsperren Große Dhünn (NRW) und Passaúna (Brasilien)

Hier nur AP2/8 – Wasserhaushaltsmodellierung (mit LARSIM)

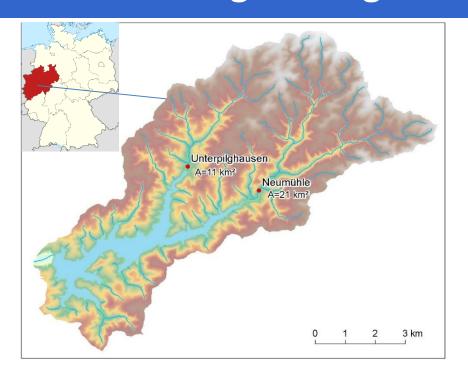
LARSIM-spezifische Ziele

→ AP2 – Wasserhaushaltsmodellierung (mit LARSIM)

Nutzung von LARSIM	Zielgrößen
Mengenbewirtschaftung der Talsperren	Q: Gesamt-Zufluss zur Talsperre
Grundlage für diffuse Stoffeinträge mit dem Abfluss (Randbedingung Stoffstrommodell MoRE)	Q: Abflussbildung in der Fläche (flächen- und lanu-differenziert)
Randbedingungen für Detailmodelle der Talsperren (Hydrodynamisch, Gewässergüte)	Q und TWAS: Differenziert nach Zuflüssen

Spezifische Aufgabenstellungen:

- Benchmark-LARSIM-Modell mit bestmöglicher Datenlage (Geo- und Meteo-Daten)
 - Große Dhünn
- Übertragbarkeit / Anwendbarkeit von LARSIM WHM außerhalb Mitteleuropas
 - Mit reduzierter Datenlage
 - Unter anderen klimatischen Bedingungen
 - Passaúna
- Beurteilung der Übertragbarkeit anhand der Zielgrößen



Große Dhünn: Überblick und Modellgrundlagen

Große Dhünntalsperre:

- Zweitgrößte Trinkwassertalsperre in Deutschland für ca. 500 000 Menschen
- NRW, im Bergischen Land
- Gesamt-EZG 61 km² (+ 29 km² Überleitung)
 - Pegel Neumühle/Große Dhünn 21 km²
 - Pegel Unterpilghausen/Kleine Dhünn 11 km²
 - Zwischen-EZG ~28 km²

Modellgrundlagen:

- Ausgangspunkt LARSIM-NRW des LANUV → Weiterentwicklung
- Teil-Einzugsgebiets-Modell (mit TGB durchschnittlich ~ 0,75 km²)
- Bodenkarte 1:50 000 + ASCII-Dateien (LANUV) → Verfeinerung und Neuausweisung der UTGB
 - → Ableitung aller Bodeninfos für bestmögliches Bodenmodul (nFK, LK, VDB, KapA inkl. InfDyn)
- Hohe Dichte von Meteo- und Niederschlags-Stationen (DWD, LANUV, Wupperverband)
- Sehr gute Datenlage bzgl. Entnahme, Wasserstand etc. der Talsperre selbst

Referenzdaten zur Kalibrierung und Validierung von 3 Teil-EZG:

- Gemessene Abflüsse an Pegeln Neumühle/Große Dhünn und Unterpilghausen/Kleine Dhünn
- Gesamtzufluss zur Talsperre aus dem EZG auf Basis der Talsperrenbilanz:

$$Qzu_{TS} = \Delta Vol_{TS} + Qab_{TS} - P_{TS} + Evap_{TS} - Qmes_{\ddot{U}berl}$$

 Qzu_{TS} Zufluss zur Talsperre

 ΔVol_{TS} Volumensänderung im betrachteten Zeitschritt

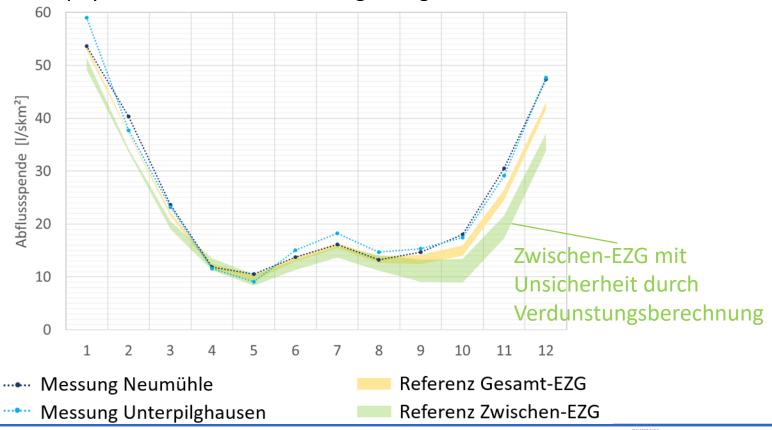
 Qab_{TS} Abgabe aus der Talsperre (Trinkwasser + Unterwasserpegel)

 P_{TS} Niederschlag auf die Wasserfläche

 $Evap_{TS}$ Verdunstung von der Wasserfläche (3 Ansätze zur Unsicherheitsabschätzung)

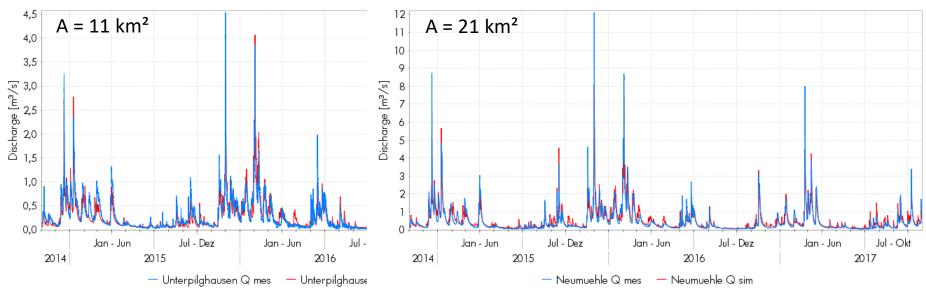
*Qmes*_{Überl} Gemessene Überleitung aus der Sülz

- → Gesamtzufluss kann auf Monats-Basis mit ausreichender Genauigkeit bestimmt werden
- Damit liegt auch Abfluss aus dem Zwischen-EZG auf Monats-Basis vor
 - → Arbeiten mit Abfluss-Regimekurven



Regimekurven der drei Teil-EZG:

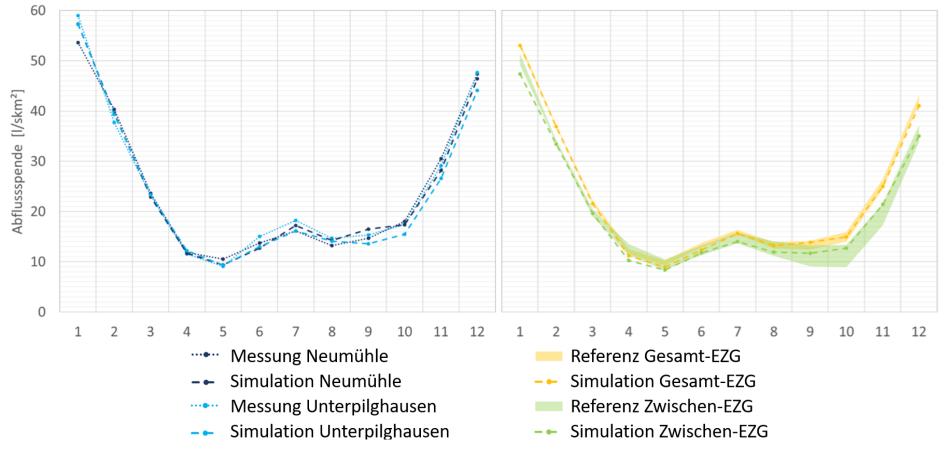
- Beide Pegel-EZG zeigen ähnliche Regime-Kurven
- Zwischen-EZG unterscheidet sich im Spätsommer/Herbst signifikant von Pegel-EZG
 - Werden die Unterschiede in der Abflussreaktion durch die physikalische Parametrisierung nachgebildet?



Kalibrierung der 2 Pegel-EZG mit einheitlichem Kalibrierparameter-Satz:

		r²	NSE	NSE_In	Bilanz	MNQ	MQ	MHQ	BFI
Neumühle/Große Dhünn	Ideal	1.00	1.00	1.00	1.00	0.06	0.53	7.4	0.25
	Sim	0.87	0.85	0.79	1.02	0.07	0.54	7.0	0.24
Unterpilghausen/Kleine Dhünn	Ideal	1.00	1.00	1.00	1.00	0.04	0.28	3.6	0.24
	Sim	0.84	0.82	0.77	0.98	0.04	0.27	3.5	0.25

→ Sehr gute Simulationsergebnisse (für EZG mit geringer Größe)



Übertragung des unveränderten Kalibrierparameter-Satzes auf Zwischen-EZG:

- → Unterschiedliche Abflussreaktionen der EZG werden abgebildet (ohne Kalibrierung)
- → Flächendifferenzierte Abflussbildung wird durch physikalische Parametrisierung (wahrscheinlich) zuverlässig abgebildet

Passaúna: Überblick

Talsperre Passaúna:

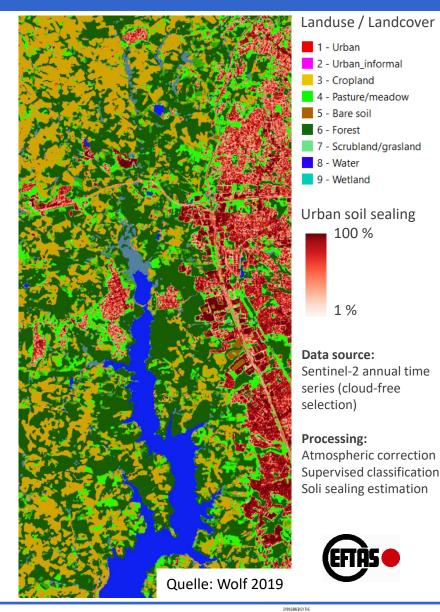
- In Südost-Brasilien (Paraná) auf 25° südlicher Breite (Subtropen)
- Jahresniederschlag: ca. 1500 mm
- Jahresmitteltemperatur: ca. 17,2 °C
- Gesamt-EZG ~150 km²
- Trinkwasser für ca. 600 000 Menschen (20% der Wasserversorgung von Curitiba)

Datenlage:

- Hydrometeorologische Daten ausreichend verfügbar (durch brasilianische Partner zur Verfügung gestellt)
- DHM und digitales Flussnetz verfügbar
- Problematisch:
 - Verdunstungsparameter der Landnutzung (Albedo, LAI)
 - Bodenphysikalische Daten
- → Verdunstungs- und Bodenparameter oft limitierend für Übertragung

BARRAGEM

Passaúna: Landnutzung und Verdunstung


Ermittlung durch Projektpartner **EFTAS** in Abstimmung mit HYDRON und KIT

Grundlage:

- Fernerkundungsdaten aus Sentinel 2-Programm
- Verfügbar seit 2017
- Räumliche Auflösung von 10 60 m
- Zeitliche Auflösung: ~5Tage

Ergebnisse:

- LANU-Klassifikation gemäß Erfordernissen für LARSIM und MoRE
- Inkl. Versiegelungsgrad für bebaute Flächen
- Lanu-spezifischer Jahresgang (Monatswerte) für
 - Albedo
 - Blattflächenindex (LAI)
- → Weltweite Ableitbarkeit (robuste Methoden)
- → Übertragbarkeit LARSIM-Verdunstungsansatz

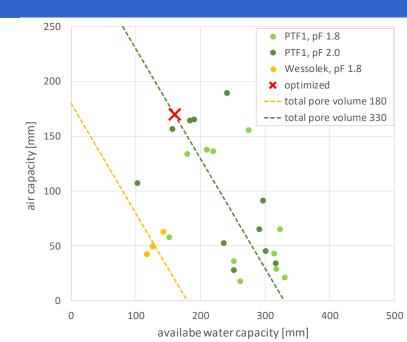
Passaúna: Bodendaten

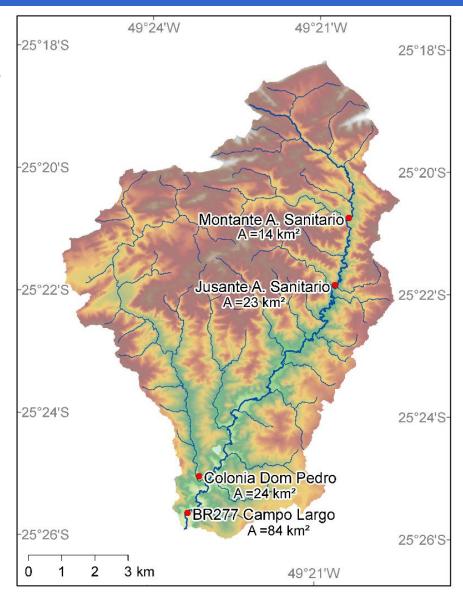
Ermittlung in Zusammenarbeit mit UFPR (soil physics) und KIT

Grundlage:

- Einzelne Bodenproben für Ackerflächen
- Große Heteorogenität

Vorgehen und Ergebnisse:


- Analyse der Bodendaten (KGV, ρ, pF-Punkte...)
- Test unterschiedlicher PTF für nFK und LK
- Auswahl SPLINTEX 1 als geeignete PTF für subtropische Tonböden
- Regionalisierung / räumliche Differenzierung auf Basis verfügbarer Infos nicht möglich
 - → Räumlich einheitliche Effektive Porosität (330 mm)
 - → Aufteilung nFK / LK anhand Repräsentanz Bodenproben und Modellergebnissen
- → Hier: nur nFK und LK sowie keine räumliche Differenzierung der Bodendaten
- → Modularer Aufbau des LARSIM-Bodenmoduls ermöglicht Übertragbarkeit


Passaúna: Abflusssimulation

Grundlage und Vorgehen:

- Genestete Pegel im EZG oberhalb der Talsperre
- Zunächst nur Kalibrierung des untersten Pegels
 - → Einheitliche Kalibrierparameter für gesamtes EZG
 - → Sim 1
- Überprüfung anhand der drei Oberliegerpegel
- Getrennte Kalibrierung aller vier PKB
 - → Unterschiedliche Kalibrierparameter je PKB
 - \rightarrow Sim 2

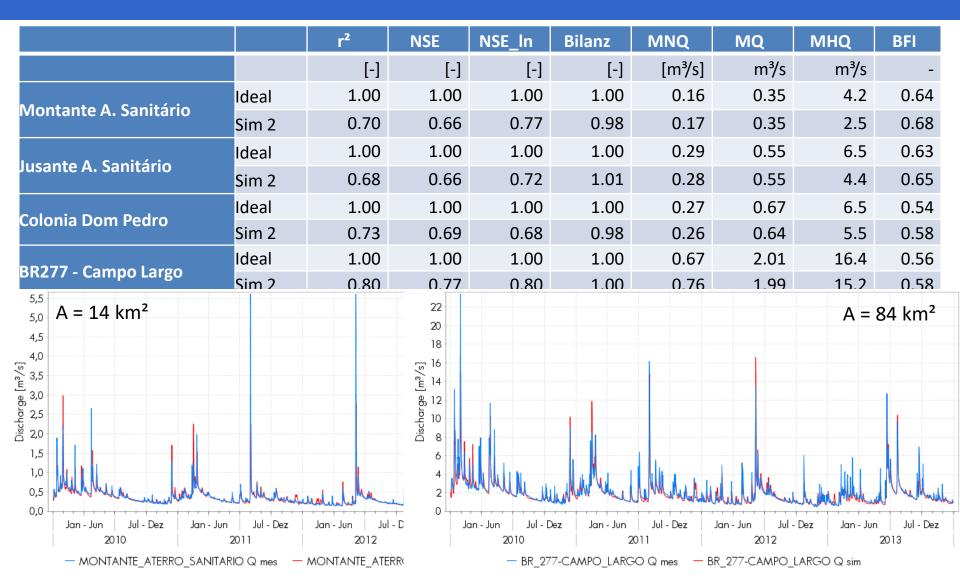
Bewertung:

- Abfluss am Pegel
- Räumlichen Differenzierung des Abflusses

Passaúna: Abflusssimulation

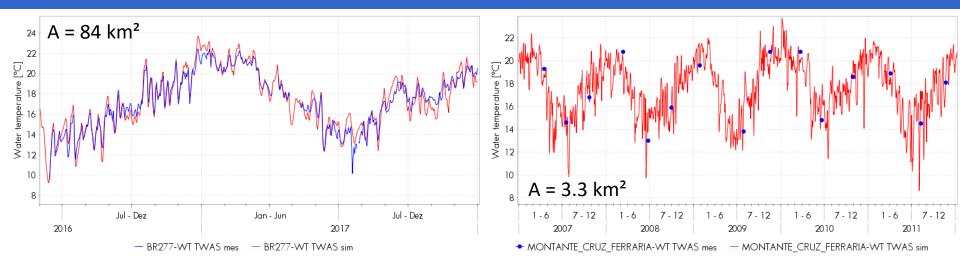
		r²	NSE	NSE_In	Bilanz	MNQ	MQ	MHQ	BFI
		[-]	[-]	[-]	[-]	[m³/s]	m³/s	m³/s	-
Montante A. Sanitário	Ideal	1.00	1.00	1.00	1.00	0.16	0.35	4.2	0.64
	Sim 1	0.69	0.66	0.70	0.97	0.15	0.34	2.4	0.62
	Sim 2	0.70	0.66	0.77	0.98	0.17	0.35	2.5	0.68
Jusante A. Sanitário	Ideal	1.00	1.00	1.00	1.00	0.29	0.55	6.5	0.63
	Sim 1	0.68	0.67	0.65	1.03	0.24	0.57	4.1	0.61
	Sim 2	0.68	0.66	0.72	1.01	0.28	0.55	4.4	0.65
Colonia Dom Pedro	Ideal	1.00	1.00	1.00	1.00	0.27	0.67	6.5	0.54
	Sim 1	0.73	0.63	0.51	0.81	0.20	0.53	4.2	0.61
	Sim 2	0.73	0.69	0.68	0.98	0.26	0.64	5.5	0.58
BR277 - Campo Largo	Ideal	1.00	1.00	1.00	1.00	0.67	2.01	16.4	0.56
	Sim 1	0.79	0.75	0.77	0.99	0.73	1.99	15.1	0.57
	Sim 2	0.80	0.77	0.80	1.00	0.76	1.99	15.2	0.58

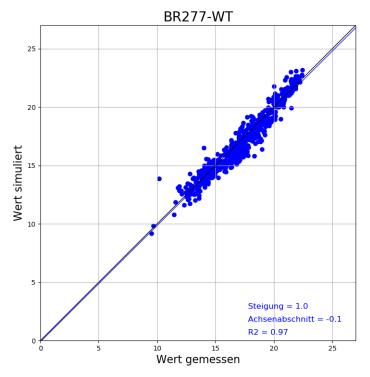
- Deutliche Verbesserung der Oberliegerpegel durch separate Kalibrierung
- Durch separate Kalibrierung auch Verbesserung am untersten Pegel
- → Räumliche Differenzierung des Abfluss innerhalb EZG nur durch physikalische Parametrisierung unzureichend → separate Kalibrierung
- → Fehlende räumliche Differenzierung der Bodendaten!



Passaúna: Abflusssimulation

Gute Ergebnisse an allen Pegeln für EZG-Größe und Datenlage (bei separater Kalib.)





Passaúna: Wassertemperaturen

- Anpassung der Parametrisierung für die Gebietsspeicher
- Zuverlässige Simulation der Wassertemperaturen an unterschiedlichen Punkten im Passaúna-EZG
- Auch für sehr kleines EZG von 3 km²
- → Übertragbarkeit des physikalischen Wassertemp.-Moduls von LARSIM

Zusammenfassung

Projekt-Zielgröße	Große Dhünn	Passaúna
Q am Pegel/Zufluss	$\overline{\checkmark}$	$\overline{\checkmark}$
Q flächendifferenziert		(-) Kalib
TWAS am Pegel/Zufluss		$\overline{\checkmark}$

- Räumliche Differenzierung der Abflussreaktion kann bei sehr guter Datenlage und geeigneter Nutzung der Bodenkarte ohne Kalibrierung nachgebildet werden → Große Dhünn (Benchmark-Modell)
- Bei schlechterer Datenlage (insb. Boden) ist die räumliche Differenzierung fraglich; am Pegel können aber gute Ergebnisse erzielt werden
- LARSIM WHM und WWM lassen sich auf Gebiete mit reduzierter Datenlage und subtropischem Klima übertragen / anwenden
 - Lanu-Verdunstungs-Parametrisierung "global" ermittelbar
 - Auswahl des Bodenmoduls nach jeweiliger Datenlage (robuste Reaktion am Pegel)

Ausblick

- Systematische Reduktion von Modell-Komplexität (Module, Parametrisierung) und Qualität der Antriebsdaten
- Vergleich der "reduzierten" Modelle mit dem Benchmark-Modell:
 - Abfluss am Pegel
 - Abflussbildung in der Fläche
 - Auswirkung auf "nachgeschaltete" Modelle
- Herausarbeiten der wichtigsten Modellbausteine, Geo- und Antriebsdaten (Mindestanforderungen)
- Welche Aussagen sind mit welcher Modell-Komplexität / Datengrundlage möglich? (welche Aspekte sind unwichtig)

DANKE

Vielen Dank für die Aufmerksamkeit!

Quellen und Literatur:

- Krumm, J., Haag, I. 2019. Multikriterielle Analyse eines Wasserhaushaltsmodells unter Berücksichtigung der Unsicherheit der Datengrundlage. Forum für Hydrologie und Wasserbewirtschaftung, Heft 41.19 (im Druck).
- Krumm, J., Haag, I., Wolf, N. 2019. Adaption des Wasserhaushaltsmodells LARSIM zur Anwendung bei veränder-ter Datenlage und unter subtropischen Bedingungen am Beispiel des Passaúna (Brasilien). Forum für Hydrologie und Wasserbewirtschaftung, Heft 41.19 (im Druck).
- Wolf, N. 2019. Present state of WP-5 Satellite Remote Sensing. Vortrag beim MuDak-WRM Workshop am 29.01.2019, Curitiba, Brasilien.

