OTAMIN (OuTil Automatique d'estiMation de l'INcertitude prédictive sur les modèles hydrologiques):

Présentation & comparaison avec Profound

Service / Unité: SPRNH / SPC Rhin-Sarre

Date: 20/03/2019

Durée: 15 min

Sommaire


- I Contexte de travail
- II Présentation de l'outil OTAMIN
- III Utilisation actuelle d'OTAMIN (en test)
- IV Utilisation actuelle de ProFoUnD (en test)
- V Comparaison avec ProFoUnD
- VI Conclusions

I - Contexte de travail

- Incertitudes : un sujet d'actualité
- OTAMIN : outil national proposé par l'IRSTEA* pour les incertitudes en prévision
- SCHAPI ** : souhait d'approfondir le travail sur les incertitudes dans les SPC

*: IRSTEA: Institut national de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture

** : SCHAPI : Service central d'hydrométéorologie et d'appui à la prévision des inondations

- Objectif:
 - Estimer de manière automatique des incertitudes pour les prévisions
 - Donner une estimation la plus <u>juste</u> possible de l'incertitude <u>prédictive</u> totale
 - juste: sens de « objective » : ni trop précise, ni trop large
 - <u>prédictive</u>: incertitude de la prévision réalisée à l'instant « t »
 - *totale*: intégrant le plus grand nombre d'incertitudes

PRÉFET DE LA RÉGION GRAND EST Sources: Formation Schapi (Incertitudes en prévision des crues), sept. 2018

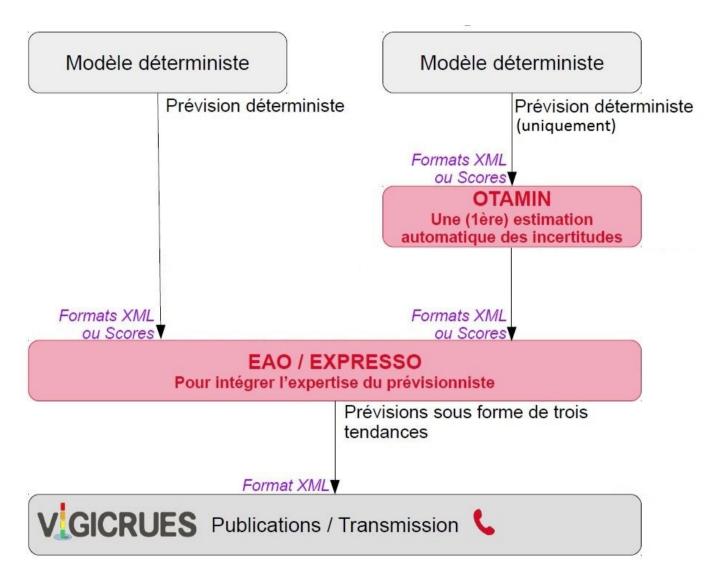
Objectif:

- Proposer des sorties de modèle, sur la base des quantiles Q 10, Q 50 et Q 90 : donne un intervalle à 80 % (proposition SCHAPI)
- Expertiser ces sorties de modèle sur le logiciel EAO, pour un envoi vers le site Vigicrues
- Quantile QX : Probabilité de X % de ne pas dépasser un débit donné

- Outil divisé en 3 utilitaires (arborescence d'exécutables) :
 - Analyse des séries passées :

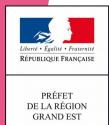
Validation de la méthode de construction des incertitudes de l'échantillon de calage, par un processus de « calage-contrôle » :

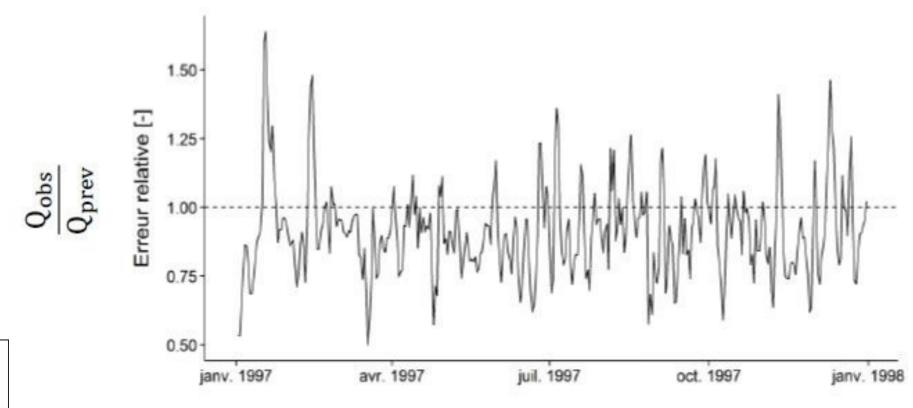
- Deux périodes « P1 » et « P2 » (P1 + P2 = chronique totale)
- Permet notamment de vérifier l'échantillonnage des prévisions et la suspicion (ou non) de non-stationnarité des prévisions
- Calage des abaques :


Construction des abaques d'estimation de l'incertitude

Utilisation en temps-réel :

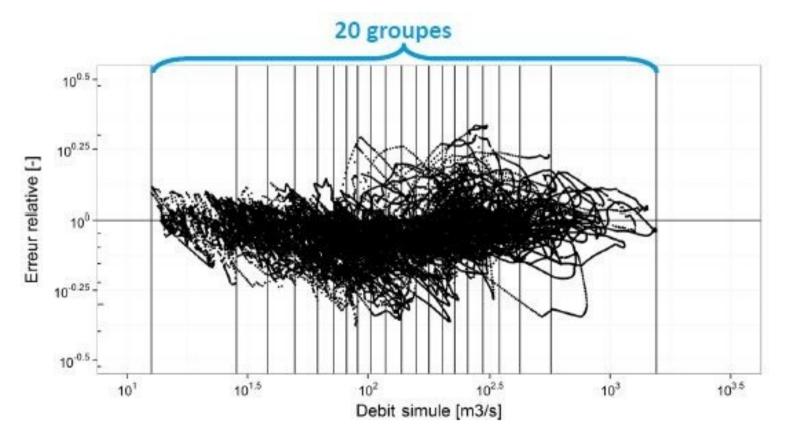
Utilisation des abaques d'estimation de l'incertitude

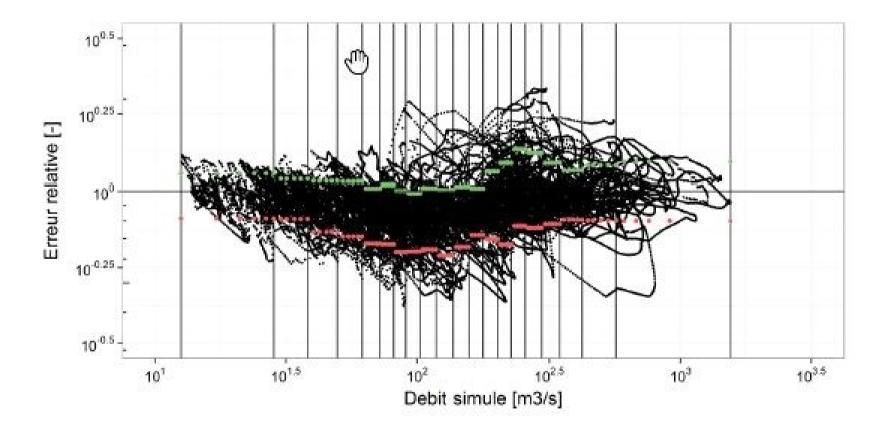

Schéma fonctionnel :



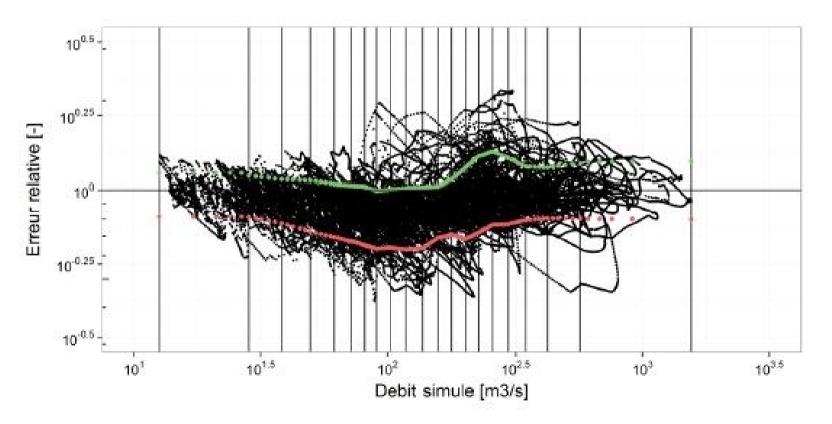
DE LA RÉGION GRAND EST Sources : Formation Schapi (Incertitudes en prévision des crues), sept. 2018

- Méthode « QUOIQUE » (travaux de thèse de F. Bourguin, 2014) :
 - QUantification Opérationnelle de l'Incertitude par QUantiles de dEbit
 - Principe: Analyse à posteriori des écarts entre observations et prévisions pour en déduire des coefficients utilisés par la suite pour définir des intervalles de confiance
 - Méthode: Construction d'un nuage d'erreurs à partir des séries d'observations et de prévisions, puis construction d'un abaque des statistiques du nuage d'erreurs: permet d'appliquer l'abaque à la prévision (déterministe) pour fournir un intervalle d'erreur
 - Hypothèse: Prévisions « stationnaires » : les statistiques calculées dans le jeu de calage peuvent s'appliquer aux prévisions futures
 - => recalage nécessaire d'OTAMIN si le modèle de prévision a été recalé


- Méthode « QUOIQUE » (travaux de thèse de F. Bourguin, 2014):
 - <u>Etape 1 sur 4 :</u> Calcul d'une série temporelle des erreurs relatives (Q observé / Q prévu), pour chaque horizon de prévision (1h, 3h, 6h, 12h, 24h,, 72h)


GRAND EST

- Méthode « QUOIQUE » (travaux de thèse de F. Bourguin, 2014):
 - <u>Etape 2 sur 4 :</u> Construction de **20 groupes de débits simulés classés** et des erreurs relatives associées (au moins 200 données par groupe, 5 groupes minimum)



- Méthode « QUOIQUE » (travaux de thèse de F. Bourguin, 2014) :
 - <u>Etape 3 sur 4 :</u> Détermination des quantiles d'erreurs relatives (pour les 20 groupes) : Q 10, Q 20, ..., Q 90, etc...

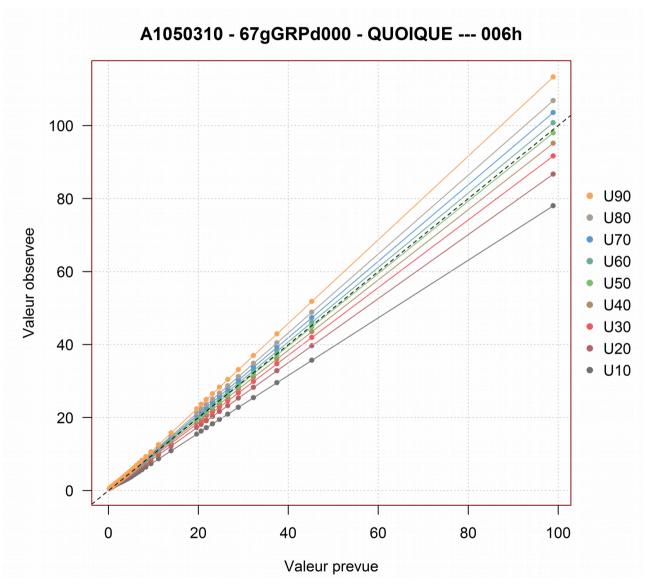
- Méthode « QUOIQUE » (travaux de thèse de F. Bourguin, 2014) :
 - <u>Etape 4 sur 4 :</u> Interpolation des quantiles sur 101 points de référence de débits prévus (les 99 centiles + le minimum et le maximum)
 - → création de l'abaque

- Méthode « QUOIQUE » (travaux de thèse de F. Bourguin, 2014):
 - Tableau des quantiles d'incertitude pour les 101 points de référence est créé, pour chaque horizon de prévision

Pour les 101
points de
référence

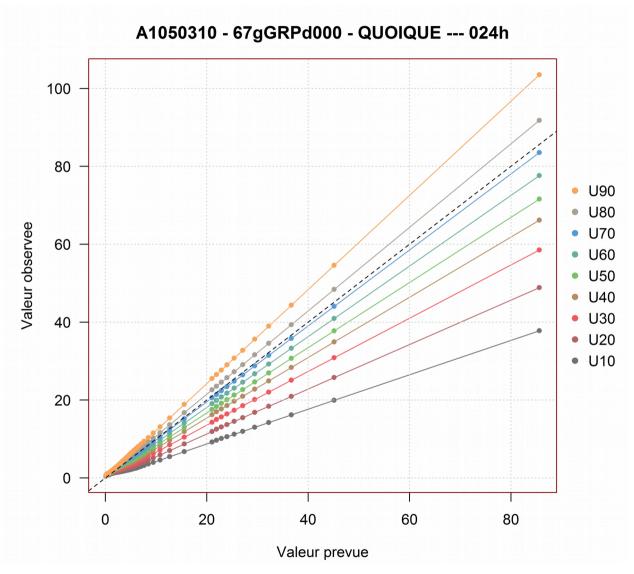
Gammes d'incertitudes prédictives

Pour chaque horizon de prévision


A	А	В	С	D	E	F	G
1	HorPrevi	PREV	J10	U25	U50	U75	U90
2	24	0.347	0.285	0.323	0.356	0.386	0.442
3	24	0.995	0.818	0.927	1.020	1.109	1.269
4	24	1.422	1.169	1.324	1.458	1.584	1.813
5	24	1.731	1.479	1.629	1.748	1.868	2.063
6	24	2.043	1.745	1.923	2.063	2.205	2.435
7	24	2.167	1.829	2.041	2.200	2.363	2.628
8	24	2.276	1.927	2.148	2.309	2.477	2.744
9	24	2.369	2.003	2.231	2.396	2.572	2.842
10	24	2.466	2.075	2.315	2.490	2.680	2.964
11	24	2.549	2.134	2.385	2.570	2.773	3.070
12	24	2.636	2.196	2.459	2.654	2.870	3.181
13	24	2.722	2.256	2.531	2.736	2.966	3.290

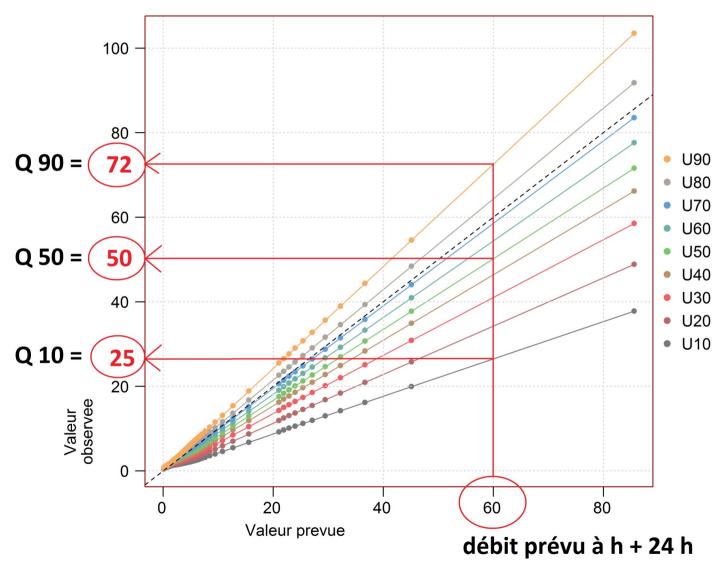
DE LA RÉGION GRAND EST Sources : IRSTEA, sept. 2018

ABAQUE


Exemple d'abaques suite au calage (6h) :

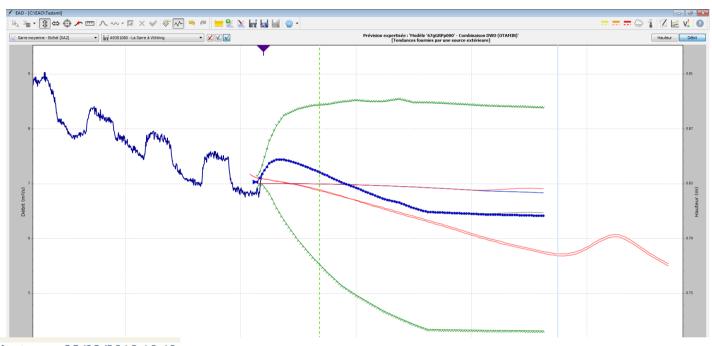
Les 101 points de référence sont visible pour chaque quantile

Exemple d'abaques suite au calage (24h) :

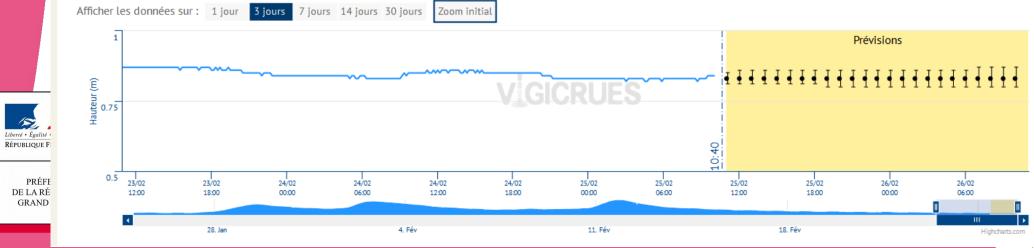


L'intervalle s'agrandit (tendance : sur-estimation des débits)

• Exemple d'abaque suite au calage (24h) : comment est construit l'intervalle ?


III - Utilisation actuelle d'OTAMIN (en test)

- Fonctionnement d'OTAMIN en opérationnel pour les modèles GRP (GRP et OTAMIN : même « fabricant »)
- Envoi des prévision GRP (déterministes) retravaillées par OTAMIN (probabilistes) vers le logiciel « EAO »
- Période actuelle de tests (pas de crues significatives observées depuis)



III - Utilisation actuelle d'OTAMIN (en test)

Prévisions via l'EAO, pour envoi vers Vigicrues :

Wittring (Sarre) - Hauteurs - 25/02/2019 10:40

IV - Utilisation actuelle de ProFoUnD (en test)

- Utilisation en opérationnel avec l'EAO :
 - 3 Stations : Colmar, Kogenheim et Wittring (résultats Larsim)
 - Prévisions en débit, converties en hauteurs pour envoi vers Vigicrues
 - Percentiles : 5 % et 95 % (de t + 1h à t + 48 h)
 - Situation hydrologique retenue (un seul cas hydrologique retenu pour les tests)

Exemple : Colmar : cas n° 3 retenu (prévision ascendante, HQ5)

	≤3MQ	≤HQ2	HQ5	>HQ5
prévision ascendante	1	2	3	4
prévision avec partie ascen- dante et descendante	1	5	6	7
prévision descendante	1	8	9	10

Source: Interprétation des évaluations avec Profound, LfU, p. 11, 12/07/2017

V – Comparaison avec ProFoUnD

- Analogies avec ProFoUnD :
 - Méthodes de calcul globalement similaires (variation des erreurs, erreurs « continues » relatives, quantiles en fonction des horizons)
- Différences avec ProFoUnD :
 - OTAMIN : Fonctionnement à priori un peu plus simple (création d'abaques pour différents horizons, à partir des quantiles d'erreur)
 - ProFoUnD permet de faire les statistiques selon une crue ascendante, descendante ou les deux (OTAMIN prend « tous les débits »)
 - Traitement des erreurs « catégoriques » (« hit », « miss », etc.) : traitées à l'extérieur d'OTAMIN (exemple : résultats de calage GRP)
 - OTAMIN : pas d'analyse « horizontale » (si décalage de quelques heures, l'erreur est augmentée malgré une prévision acceptable)

VI - Conclusions

- Principaux enjeux des incertitudes :
 - Anticipation (horizon de prévision)
 - Précision (en particulier sur le pic de crue)
 - Fiabilité (nombre limité de fausses alertes)
 - Robustesse (capacité d'adaptation à de nouvelles situations)
- Gestion des incertitudes : 3 principales possibilités :
 - Larsim avec Profound, le reste avec OTAMIN
 - Tout est géré par Profound
 - Tout est géré par OTAMIN

VI - Conclusions

- Limites de l'outil OTAMIN :
 - Hypothèse de stationnarité :
 - « la crue en cours ressemble-t-elle aux crues de calage d'OTAMIN ? » « quelles seraient les incertitudes sur une crue plus forte que celles disponibles en calage ? »
 - Incertitudes du modèle uniquement :
 - Incertitudes variées : pluies, débits mesurées...
 - Calage réalisé en pluies « parfaites »
 - Limite des données observées disponibles

FIN

PRÉFET DE LA RÉGION GRAND EST