

Sturzflutmodellierung auf dem Prüfstand

Hydrologische Modellierung im Projekt HiOS

Übersicht

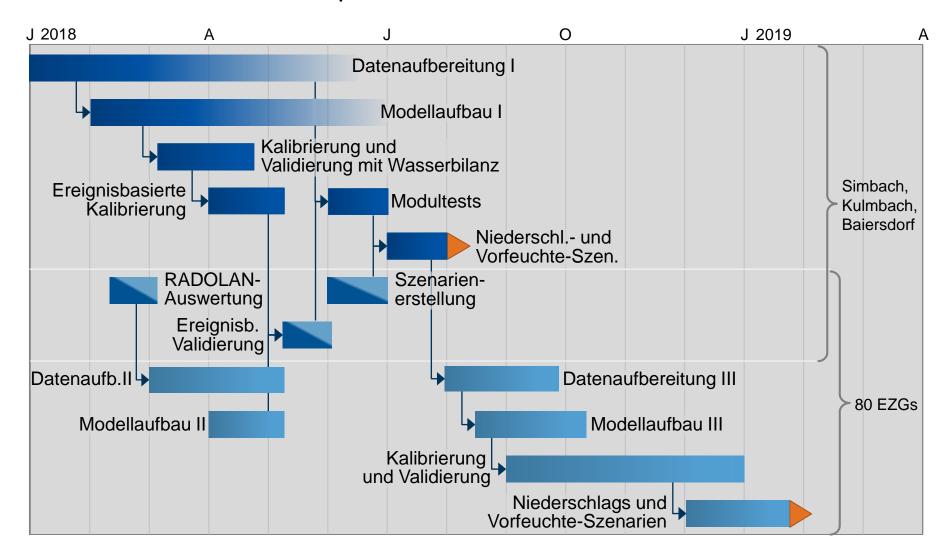
- 1. HiOS Ziele und Methoden
- 2. Details zur LARSIM-Modellierung in HiOS
- 3. Grenzerfahrungen mit LARSIM: Technische Herausforderungen
- 4. Automatisierte Erstellung der Tape12-Gebietsdatei
- 5. Testgebiete

1. Arbeitsgruppen

Geostatistik ESRI ArcGIS MySQL PostGreSQL

Hydrodynamik
Hydro-AS 2D
TELEMAC 2D
FloodArea
PD-Wave

Hydrologie LARSIM WaSiM



1. Methoden der Hydrologie in HiOS

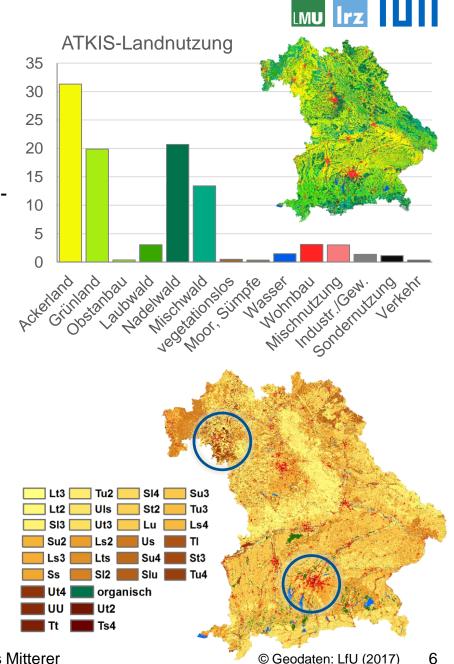
2. Simulations- und Zeitplan

2. Datengrundlagen

Einbindung der Landwirtschaft

- Implementierung der wichtigsten 5 INVEKOS-Klassen in ATKIS
- Maßgebend: Verlauf des Biomasseaufbaus
- jährlicher Wechsel der Landnutzung für ereignisbasierte Simulation

Realistische Siedlungsmodellierung


Prüfung der Modellierungsmethodik

Räumlich aufgelöste Bodenparameter

- BaSIS (ÜBK25) Rasterdaten
- Füllung von Lücken (Gewässer, Siedlung)
- Quantitative Aussagen zur Variabilität

Hochaufgelöste Geländedaten

1m-DGM aus Laserscanning

2. Kalibrieren bei Sturzfluten

Annahme: Außergewöhnliche Prozesse bei Sturzfluten erfordern getrennten Modellbetrieb → Ungleiche Rahmenbedingungen von WHM- und Sturzflut-Modellierung (Nachführung!)

Wasserbilanz-Kalibrierung

- Erstellung der Vorbedingungen
- Hydrologische Einordnung der Prozesse im Einzugsgebiet
- verbesserte r\u00e4umliche und zeitliche Aufl\u00f6sung
- z.B. 100 m / 1h

"Sturzfluten-Kalibrierung"

- Reproduktion von Ereignissen
- Berechnung der maßgebenden Abflüsse
- z.B. 25 m / 5 min

Erforderliche Regionalisierung von Parametersätzen:

- Bayernweite Datensätze benötigt (Bewertung des kommunalen Risikos)
- Viele zu berechnende EZGs ohne Pegel (maßgebend: Unterlieger oder Nachbar)
- Sturzflutereignisse liegen als Abflussmessdaten nur selten vor

2. Geplante Modultests der Hydrologischen Modelle

Modul	WaSiM	LARSIM
Abflussbildung	Verschlämmungs- modul	 Standard-Bodenmodul, ERW. BODENPARAMETER ROGER-Bodenmodul
Abflusskonzentration	2D-Routing	Linearspeicher/Kirpich
Routing	Keine Auswahl (Standard: Kinematische Welle)	 Williams Translation-Retention Konstante Translation Kalinin-Miljukov
Summe:	4 Varianten	12 Varianten

2. Geplante Niederschlags- und Vorfeuchte-Szenarien

Niederschlag:

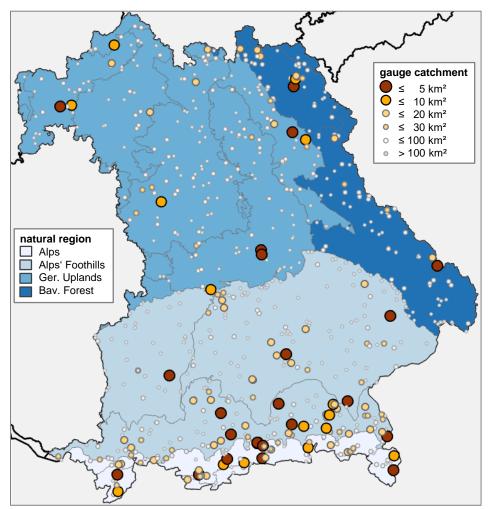
- 1. **DWD Warnung** 3 und 4 (16 Szen.)
 - räumlich gleichverteilt
 - · Block, anfangs-, mitten-, endbetont
 - 25 und 40 mm/h, 35 und 60 mm/6h

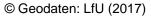
2. Risikoanalyse (96 Szen.)

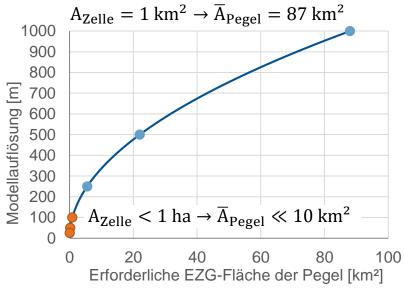
- KOSTRA 2010R 100a und ?a (500?)
- räumlich nach Pixel-Werte aufgelöst
- Block, anfangs-, mitten-, endbetont)
- Alle Dauerstufen bis 6h

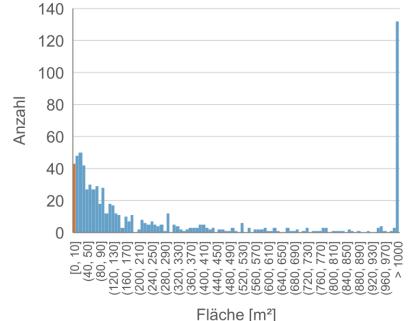
3. Hydrologische Validierung

- Ereignisse von 80 Städten
- RADOLAN-YW in 5-min.-Zeitschritt
- räumliches 1 km²-Raster
- Auswertungszeitraum 2002-2017


Vorfeuchte:


- 1. Pauschale Feuchteverteilung (3 Szen.)
 - räumlich gleichverteilt über alle Bodenarten
 - nass (nach mehrstündigem Regen)
 - feucht (2 Tage Abtrocknung)
 - trocken (Trockenperiode ohne Regen)
- 2. Geostatistik aus ClimEx (3 Szen.)
 - Bodenfeuchte aus extrapolierten Zeitreihen
 - Geostatistische Auswertung je Zelle
 - räumlich differenziert (WaSiM 500m-Raster)
 - 95%-, 50%- und 5%-Quantil der Bodenfeuchte
- → 672 Szenarien pro Einzugsgebiet (+ RADOLAN-Events)





3. Herausforderung Skalenwechsel

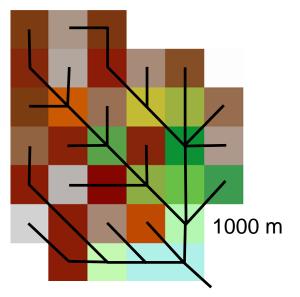
3. Grenzerfahrung Hochaufgelöste Modellierung

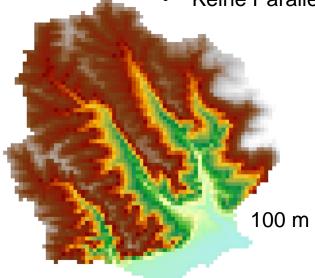
LARSIM = Large Area Runoff Sim. Model

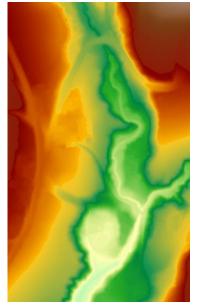
Hydrologische Grenzgänge

- Skalensprung im 1D-Routing
- Statische Rauheiten im Kirpich-Konzept
- Kein 2D-Routing
- 1D-Querprofile (Gerinneschätzer)
- Verfügbarkeit der Bodeninformation

Technische Herausforderungen


Skalenproblem


 Vorgabe der Fließwegvernetzung als Integer mit 5 Stellen


Historisch gewachsene Code-Struktur

- Viele Spezial-Optionen
- Verschachtelte Code-Struktur

Keine Parallelisierung

10 m

4. Automatisierte Erstellung der Tape12-Gebietsdatei

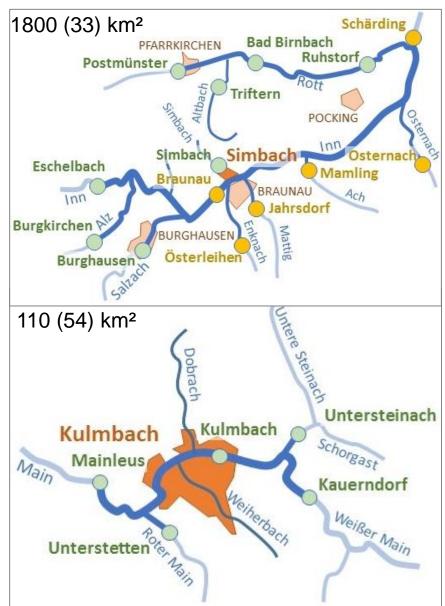
Aufgabenstellung:

- Vorgabe der notwendigen Inputdaten als Raster- oder Shape-Datei
- automatische Abgabe einer nutzbaren Tape12-Gebietsdatei
- Berücksichtigung von gewählten Optionen
- Vorläufig in MATLAB, später Verknüpfung mit ArcGIS (z.B. als Toolbox/Python-Skript)

→ Erste lauffähige Arbeitsversion für einfaches Tape12 ohne Erweiterungsoptionen ist erstellt

Arbeitsschritte:

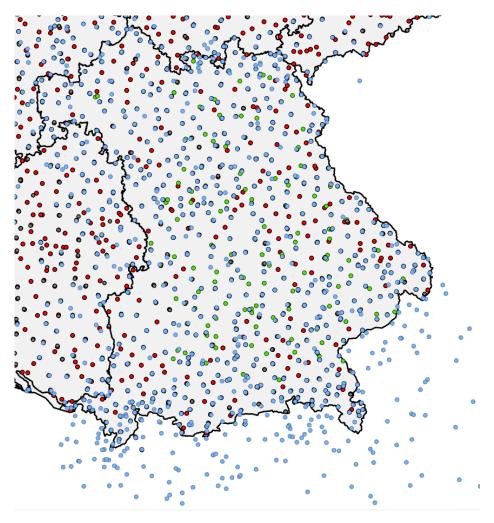
- 1. Fließvernetzung: J, FT, X, Y
- 2. Routing: KMU, KMO, GEF
- 3. Abflusskonzentration: FT, TAL, HOT, HUT
- 4. Gerinnebreiten: HM, BM, BL, BR, BBL und BBR
- Gerinneneigung: BNM, BNL, BNR, BNVRL und BNVRR
- 6. Rauigkeiten: SKM, SKL und SKR
- 7. Landnutzung, Boden



5. Testgebiete

Hydrologie der EZGs

Schwierige r\u00e4umliche Abgrenzung


Vielen Dank für Ihre Aufmerksamkeit!

Fragen?

- Datenlieferung I (MR90)
- Datenlieferung II (Rest)
- Offene DWD-Stationen
- Offene LfL-Stationen

- Datenaufbereitung Meteorologie
- Hochaufgelöste (1 min.)
 Niederschlagsdaten (MR90)
- Hochaufgelöste (10 min.) Daten aller anderen Variablen
 - DWD Stationen enthalten
 - Schwierige Zuordnung der Metadaten
 - Räumliche Abdeckung hoch aufgelöster Daten gering → Order stündlicher / täglicher Daten notwendig für hydrologische Modellierung

Datenaufbereitung – Abflüsse

Pegeldaten in 12/2017 erhalten

- Unterschiedliche Zeitintervalle (höchste vorliegende Auflösung)
- Verschiedene, sich teilweise widersprechende Datenpakete
- Dateinamen unbrauchbar (zu lang!)
- Teilweise fehlende Pegel (ZAMG, Kulmbach)
- Nur wenige Pegel mit kleinem EZG
- → Auswahl des richtigen Datenpakets
- → Verschneidung von Zeiträumen
- → Daten teilweise ungeprüft (Protokoll!)

