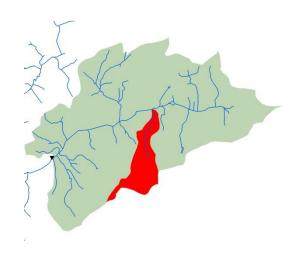


Bemessung mit LARSIM-NA in Bayern

Inhalt


- 1. Bemessung mit LARSIM-NA in Bayern
- 2. Abflussbestimmung in LARSIM-NA
- 3. Ansätze zur flächendifferenzierten Parametrisierung
- 4. Beispiel

1. Bemessung mit LARSIM-NA in Bayern

- In Bayern wird eine hochaufgelöste, flächendeckende und sich überlagernde Abdeckung von LARSIM-NA bzw. LARSIM-WHM-Modellen angestrebt.
- Anwendung in der Hochwasservorhersage und hydrologischen Planung (Bemessung)
 - > Synergieeffekte in der Modellpflege aufgrund der gemeinsame verwendeten Gebietsdatei
- Flächendifferenzierte Parametrisierung von LARSIM-NA
 - ✓ <u>Pegelkontrollbereiche</u>

 näherungsweise Übernahme von
 Parametern bestehender FGMOD-Gebiete (gleiche Kontrollbereiche vorausgesetzt)
 - ? EZG innerhalb eines Kontrollbereichs

2. Abflussbestimmung in LARSIM-NA

• PSI (Abflussbeiwert) bzw. CN-Wert

EINZELLINEARSPEICHER

- EQI (Rückhalt Interflow)
- EQD (Rückhalt Direktabfluss unbebauter Gebieten)

EINHEITSGANGLINIE

- PN (Anzahl der Speicher)
- PK (Rückhalt im Speicher)

2. Abflussbestimmung in LARSIM-NA

ABFLUSSBEIWERTFUNKTION -

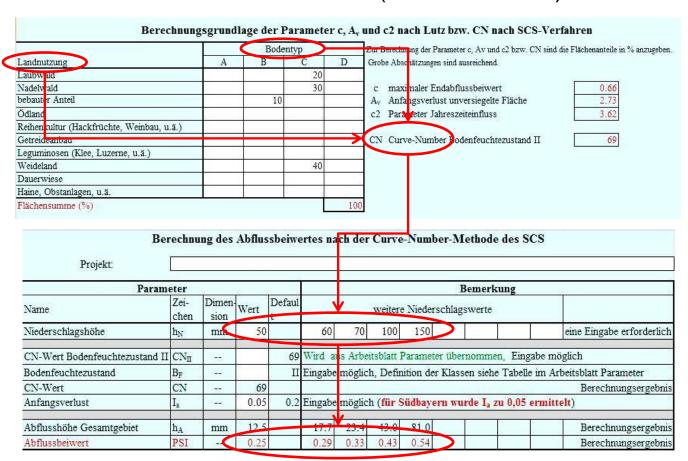
PSI (Abflussbeiwert) bzw. CN-Wert

EINZELLINEARSPEICHER

- EQI (Rückhalt Interflow)
- EQD (Rückhalt Direktabfluss unbebauter Gebieten)

EINHEITSGANGLINIE

- PN (Anzahl der Speicher)
- PK (Rückhalt im Speicher)


ABFLUSSBEIWERT (PSI / CN-Wert)

		Bode	ntyp		Zur Berechnung der Parameter c, Av und c2 bzw. CN sind die	Flächenanteile in % an:
Landnutzung	A	В	C	D	Grobe Abschätzungen sind ausreichend.	
Laubwald			20		***************************************	
Nadelwald			30		c maximaler Endabflussbeiwert	0.66
bebauter Anteil		10			A _v Anfangsverlust unversiegelte Fläche	2.73
Ödland					c2 Parameter Jahreszeiteinfluss	3.62
Reihenkultur (Hackfrüchte, Weinbau, u.ä.)					ACCOR DE CONTROL CONTR	
Getreideanbau					CN Curve-Number Bodenfeuchtezustand II	69
Leguminosen (Klee, Luzerne, u.ä.)						·
Weideland			40			
Dauerwiese						
Haine, Obstanlagen, u.ä.						

Ber	echnu	ng des	Abflus	sbeiwe	ertes na	ch der	Curve	-Numb	er-M	ethode	des S	SCS	
Projekt:													
Parame			er :	S 10					В	emerk	ung		
Name	Zei- chen	Dimen- sion	Wert	Defaul t			weiter	e Nieder	schlags	werte			
Niederschlagshöhe	h_N	mm	50		60	70	100	150			0.		eine Eingabe erforderlich
CN-Wert Bodenfeuchtezustand II	CN_{II}	1000		69	Wird au	ıs Arbei	tsblatt l	Paramete	er über	nomme	n, Ein	gabe mö	glich
Bodenfeuchtezustand	B_F			II	Eingabe	möglicl	n, Defir	nition de	r Klass	en siehe	Tabel	le im Arl	peitsblatt Parameter
CN-Wert	CN		69										Berechnungsergebnis
Anfangsverlust	Ia		0.05	0.2	Eingabe	möglicl	h (für S	Südbaye	rn wu	rde I _a 2	u 0,05	ermitte	elt)
Abflusshöhe Gesamtgebiet	h _A	mm	12.5		17.7	23.4	43.0	81.0			10		Berechnungsergebnis
Abflussbeiwert	PSI	1070	0.25		0.29	0.33	0.43	0.54					Berechnungsergebnis

ABFLUSSBEIWERT (PSI / CN-Wert)

ABFLUSSBEIWERT (PSI / CN-Wert)

LARSIM-WHM

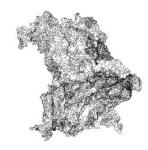
Gebietsdatei (Tape12)

- ✓ Landnutzung [%]
 (Zeile 4a, 4b)
- ✓ nutzbare Feldkapazität [mm]
 (Zeile 5a, 5b)

*	gesa	amte	3	Einzug	sge	ebie	t [qkm]		=			5							
×	Geri	innel	oi	ldende	r	Abfl	uss	[cb	m/s	3] =		1.	78							
	8					1.0	00		0	.5		286.		226.	,	441	0.5	55	35.5	1
	8	4	52	4533	4	5223	26	0.	032	74	1	0.41		1.68			0		0	2
	8			1.68		1.	68		0.	58	10	0.00	1	100.00		4	.00		4.00	3a
	8		3	5.00		20.	00		20.	00										3b
	8	0	þ	30.	0	. 6	8.	0.		0.	0.	0.	0.	. 0.	2	þ	0.	0.	0.	4a
	8	0		0.																4b
Г	8	0	į	194.	0	. 19	4.	0.		0.	0.	0.	194.	. 0.	192	è	0.	0.	0.	5a
	8	194	į	0.																5b

ABFLUSSBEIWERT (PSI / CN-Wert)

LARSIM-WHM


Gebietsdatei (Tape12)

- ✓ Landnutzung [%]
 (Zeile 4a, 4b)
- ✓ nutzbare Feldkapazität [mm] (Zeile 5a, 5b)

ř	gesa	amtes	Einzug	sgel	biet [qkm]	=			5						
	Geri	nneb	ildende	r Al	ofluss	[cbm	/s] =		1.	78						
	8				1.000		0.5		286.		226.	44	10.5	55	35.5	3
	8	6	24533	6	22326	0.0	3274	1	0.41		1.68		0		0	2
	8		1.68		1.68		0.58	10	0.00	10	0.00	,	4.00		4.00	38
	8		35.00		20.00	2	0.00									31
	8	0.	30.	0.	68.	0.	0.	0.	0.	0.	0.	2.	0.	0.	0.	48
	8	0.	0.													41
	8	0.	194.	0.	194.	0.	0.	0.	0.	194.	0.	192.	0.	0.	0.	58
	8	194.	0.													51

<u>HyPla</u>

EZG-Fläche

Corine 2012

3. Ansätze zur flächendifferenzierten Parametrisierung EINHEITSGANGLINIE (PN / PK)

Name des Einzugsgebietes:										
				Einzel- linear		Nash-	Modell		Diskin-	Mode
Gebietsspezifische Parameter	Dimension	Wert	Dreiecks-EGL	DVWK Südbayem	Braun/Seeger	Lutz Südbayem	Lutz/Caspary	SCS/Caspary	Thiele	Wackermann
Anlaufzeit t _{max}	hh:mm		00:00	00:00						
Ablaufzeit t _{ab}	hh:mm		00:00							
Speicherkonstante k ₁	h			0.000	0.000	0.000	0.000	0.000	0.000	0.000
Speicheranzahl n ₁	100			10	0.000	0.000	0	0	0	0
Aufteilungsfaktor ß	15				20				0.000	0.000
Speicherkonstante k ₂	h								0.000	0.000
Speicheranzahl n₂	æ								0	0
Dauer des Zeitintervalls	hh:mm			1		1	1	1		
Fläche A _{Eo} (oberirdisches Einzugsgebiet)	km²				1					
Vorfluterlänge L	km		1	1	- 1	1	1	1	1	1
Vorfluterlänge L _e bis Schwerpunkt	km					1	1			
Absolutes Gefälle des Vorfluters	%								1	1
Gewogenes mittleres Gefälle des Vorfluters	%		1	1		1	1			
Ablauffaktor	4		1							
Vorfluterdichte	km/km²									1
Mittleres Geländegefälle I _G	%							1		
Maximale Geländehöhe (des Einzugsgebietes)	m ü. NN				-					
Bebauter Flächenanteil a _b	%				4 2	1	1		4 4	
Bewaldeter Flächenanteil a _w	%					1	1			
Gebietsparameter P1	-						Ж			
Rauhigkeitsbeiwert k _{st} des Vorfluters	m ^{1/3} /s						ж			
CN-Wert des SCS-Verfahrens								1		

EINHEITSGANGLINIE (PN / PK)

Name des Einzugsgebietes:		
Gebietsspezifische Parameter	Dimension	Wert
Anlaufzeit t _{max}	hh:mm	
Ablaufzeit t _{eb}	hh:mm	
Speicherkonstante k ₁	h	
Speicheranzahl n ₁	28	
Aufteilungsfaktor ß		
Speicherkonstante k ₂	h	
Speicheranzahl n₂	-5	
Dauer des Zeitintervalls	hh:mm	
Fläche A _{so} (oberirdisches Einzugsgebiet)	km²	
Vorfluterlänge L	km	
Vorfluterlänge L _s bis Schwerpunkt	km	
Absolutes Gefälle des Vorfluters	%	
Gewogenes mittleres Gefälle des Vorfluters	%	
Ablauffaktor	-	
Vorfluterdichte	km/km²	
Mittleres Geländegefälle l _o	%	
Maximale Geländehöhe (des Einzugsgebietes)	m ü. NN	
Bebaute riächenanteil a	%	
Bewald te C.c Jan Saw	%	
Gebietsparameter P1	= ,	
Rauhigkeitsbeiwert k _{st} des Vorfluters	m ^{1/3} /s	
CN-Wert des SCS-Verfahrens	- 5	

EINHEITSGANGLINIE (PN / PK)

LARSIM-WHM

Gebietsdatei (Tape12)

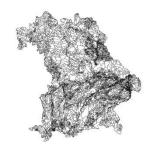
- ✓ Vorfluterhöhe oben/unten [m+NN] (Zeile 1)
- ✓ Stationierung oben/unten [m] (Zeile 2)
- ✓ Gefälle [m/m]
 (Zeile 2)

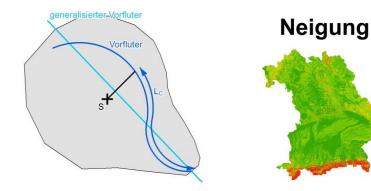
100		Einzu 1dend	(T) (T)	27	5760 191	/3] =		0.00	2						
5900	184	6310	0	.250	<u></u> 0	500	545.	985	528.	553	4526	.250	5301.	650	1
5900		2828		2827	0.0	0400	0.	000	0.	000	0	.000	0.	000	2
5900	0	.000	0	.000	0	.000	0.	000	0.	000	0	.000	0.	000	38
5900	0	.000	0	.000	0	.000	0.	000							3k
5900	0.0	50.0	0.0	0.0	0.0	0.0	0	0	0	0	0	50	0	0	48
5900	0	0													4k
5900	0	120	0	0	0	0	0	0	0	0	0	115	0	0	5a
5900	0	0													5k

EINHEITSGANGLINIE (PN / PK)

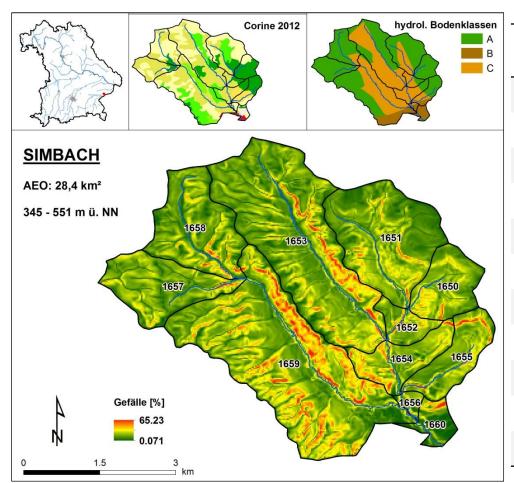
LARSIM-WHM

Gebietsdatei (Tape12)

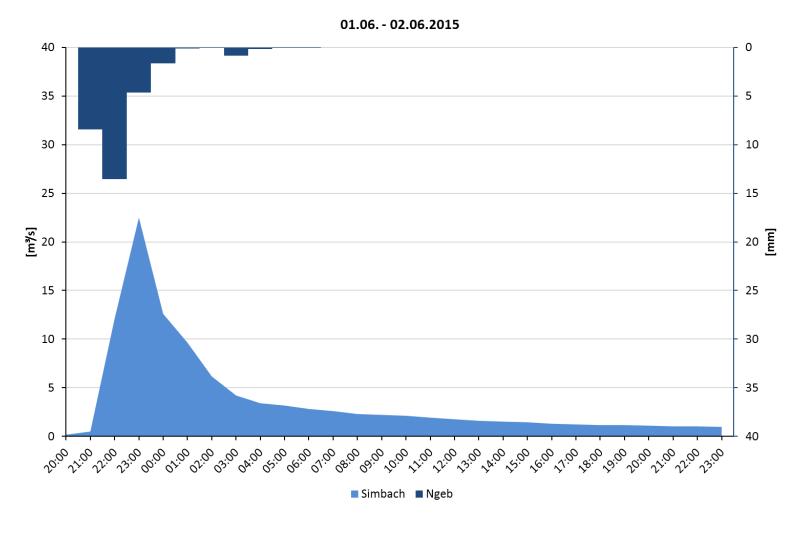

- ✓ Vorfluterhöhe oben/unten [m+NN] (Zeile 1)
- ✓ Stationierung oben/unten [m]

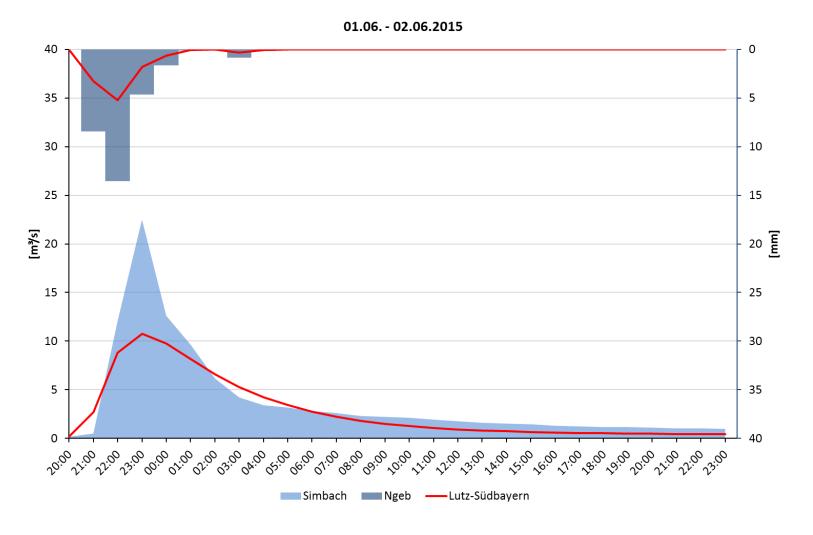

 (Zeile 2)
- ✓ Gefälle [m/m]
 (Zeile 2)

Geri	nnebi	ldend	er Ab	fluss	[cbm	/3] =		0.00		_					
5900	184	6310	0	. 250	0	500	545.	985	528.	553	4526	.250	5301.	650	
5900	- 1	2828		2827	0.0	0400	0.	000	0.	000	0	.000	0.	000	
5900	C	.000	0	.000	0	.000	0.	000	0.	000	0	.000	0.	000	3
5900	0	.000	0	.000	0	.000	0.	000							3
5900	0.0	50.0	0.0	0.0	0.0	0.0	0	0	0	0	0	50	0	0	4
900	0	0													4
5900	0	120	0	0	0	0	0	0	0	0	0	115	0	0	5
5900	0	0													5


<u>HyPla</u>

EZG-Fläche





TGB	Lut	z-Südba	yern	SC	CS-Cas _l	oary
	PSI	PN	PK	PSI	PN	PK
1650	0.18	1.532	1.665	0.17	4.7	0.483
1651	0.35	1.605	2.305	0.39	4.7	0.434
1652	0.42	1.519	1.563	0.46	4.7	0.219
1653	0.43	1.680	3.078	0.51	4.7	0.507
1654	0.42	1.630	2.554	0.46	4.7	0.249
1655	0.44	1.562	1.922	0.46	4.7	0.350
1656	0.50	1.534	1.685	0.61	4.7	0.198
1657	0.27	1.572	2.001	0.34	4.7	0.411
1658	0.35	1.636	2.608	0.43	4.7	0.440
1659	0.41	1.701	3.318	0.46	4.7	0.474
1660	0.46	1.443	1.036	0.50	4.7	0.227

