Atelier Larsim 2015

Le développement de LARSIM en matière de simulation de neige

Ingo Haag, Dirk Aigner, Nicole Henn, Angela Sieber

HYDRON Ingenieurgesellschaft für Umwelt und Wasserwirtschaft mbH

Margret Johst

Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz LUWG

Introduction

 Sous-groupe de travail "Neige" de la communauté des développeurs LARSIM

Objectifs:

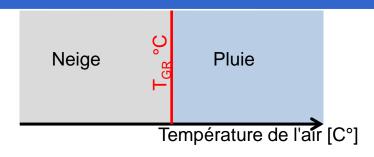
- Identifier les problèmes de neige en mode opérationnel
- Mettre en relief les améliorations potentielles
- Prioriser les travaux
- → La mise en œuvre dans LARSIM

dans le présent exposé

Maîtres d'œuvre : LUBW et LUWG

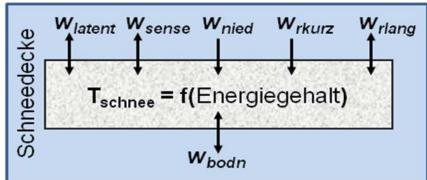
et dans l'ajustement externe des paramètres nivaux

dans un exposé séparé
Les améliorations récentes
de l'ajustement externe
des paramètres nivaux



Les bases : La neige dans Larsim

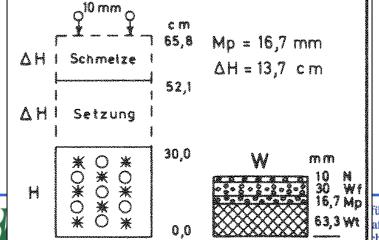
• L'accumulation de neige


T_{Luft} < T_{GR} → chute de neige Formation du manteau neigeux avec de la neige fraîche sèche

• Le bilan énergétique du manteau neigeux

Température du manteau neigeux et fonte potentielle

- Méthode degré-jour
- Knauf simplifié
- Knauf étendu
- Approche bilan énergétique UEB
- Bilan énergétique complet


• Le compactage et le dégagement d'eau

Rétention d'eau liquide dans le manteau neigeux et dégagement d'eau effectif

- Approche compactage UEB
- Méthode Bertle

Les bases : La neige dans Larsim

Les combinaisons possibles Bilan énergétique - Compaction

en fonction de la mission et de la disponibilité des données							
•	Setzung und Wasserabo			serabgabe			
			ohne	Bertle- Verfahren	UEB- Retention		
	Energiebilanz	Grad-Tag-Verfahren	X	X			
		Knauf vereinfacht	X	X			
		Knauf erweitert	Χ	X			
		Utah Energy Balance Snow Accumulation and Melt Model UEB	X		Х		
		Vollständige Energiebilanz (mit Zusatzoptionen)	X	X	X		

→ Les modèles opérationnels des Länder: Intègrent le bilan énergétique complet + la méthode Bertle

Synopsis

Les aspects considérés dans la modélisation de la neige avec LARSIM

L'accumulation de neige

→ Option SCHNEEREGEN (pluie neigeuse) implémentée dans LARSIM

Le compactage et le dégagement d'eau

- → Analyse et la simplification de la méthode Bertle
- → Option SNOW-COMPACTION 3 implémentée dans LARSIM

Le bilan énergétique du manteau neigeux

- → Validation du bilan énergétique sous couvert forestier
- → Stratégie pour améliorer et assouplir l'implémentation dans LARSIM

L'accumulation de neige / aspects complémentaires

- → Analyse de l'interception (et de la sublimation) de la neige par les couronnes d'arbres
- → Stratégie pour l'intégration dans LARSIM

Synopsis

Les aspects considérés dans la modélisation de la neige avec LARSIM

L'accumulation de neige

→ Option SCHNEEREGEN (pluie neigeuse) implémentée dans LARSIM

Le compactage et le dégagement d'eau

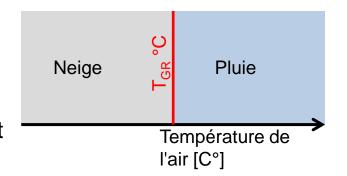
- → Analyse et la simplification de la méthode Bertle
- → Option SNOW-COMPACTION 3 implémentée dans LARSIM

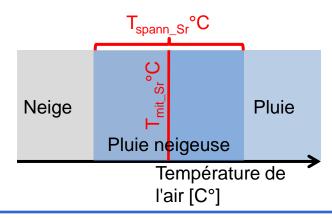
Le bilan énergétique du manteau neigeux

- → Validation du bilan énergétique sous couvert forestier
- → Stratégie pour améliorer et assouplir l'implémentation dans LARSIM

L'accumulation de neige / aspects complémentaires

- → Analyse de l'interception (et de la sublimation) de la neige par les couronnes d'arbres
- → Stratégie pour l'intégration dans LARSIM

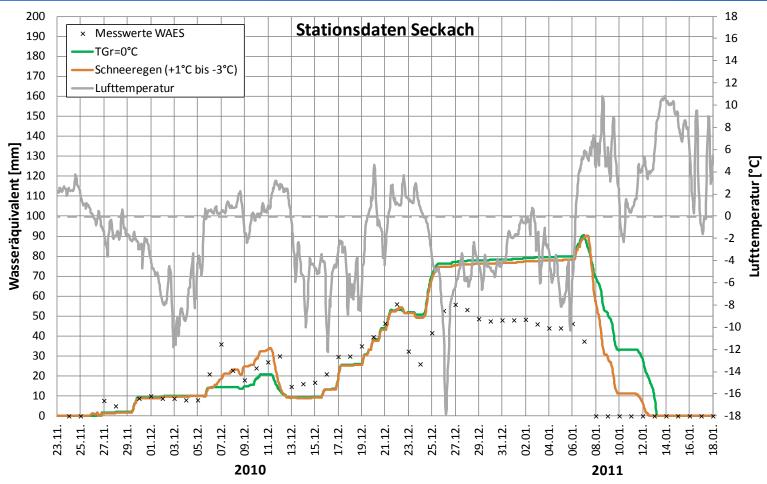

Pluie neigeuse


Situation de départ :

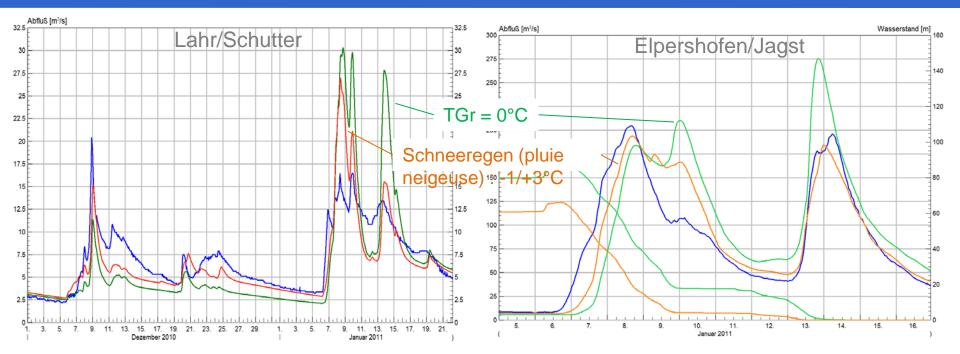
- Jusqu'à présent: limite figée (T_{GR}) : Pluie ou neige (sèche!)
- T_{GR} très sensitive, changement abrupt de la réaction hydrologique
- En cas de chute de neige, le manteau neigeux est toujours complètement sec, ce qui fait que le dégagement d'eau à partir du manteau neigeux tend à intervenir trop tard et trop lentement.

L'option SCHNEEREGEN (pluie neigeuse) dans LARSIM :

- Les paramètres Tmit_Sr et Tspann_Sr pour la phase de transition entre la neige sèche et la pluie
- Pendant la transition: interpolation linéaire de la part liquide



La pluie neigeuse (Schneeregen)


- Paramètre sensitif (surtout en présence d'un manteau neigeux non pérenne, proche de Tgr / Tmit_Sr)
- Réaction atténuée aux alentours de TGr / Tmit_SR
- Le manteau neigeux a tendance à être plus humide → dégagement d'eau plus important

La pluie neigeuse (Schneeregen)

- Test pour des affluents du Rhin supérieur + Jagst, notamment pour l'hiver 2010/2011
- SCHNEEREGEN (pluie neigeuse) permet d'obtenir des améliorations
- 2010/2011 : Meilleure répartition du débit entre l'évènement de décembre et celui
- Tspann_Sr de 4 °C a fait ses preuves jusqu'ici
- Le secteur de transition n'est pas symmétrique autour de TGr, mais tend à être inférieur, p. ex. TGr = 0 °C → -3 °C à +1 °C (Tmit_Sr = -1 °C, Tspann_Sr = 4 °C)

Synopsis

Les aspects considérés dans la modélisation de la neige avec LARSIM

L'accumulation de neige

→ Option SCHNEEREGEN (pluie neigeuse) implémentée dans LARSIM

Le compactage et le dégagement d'eau

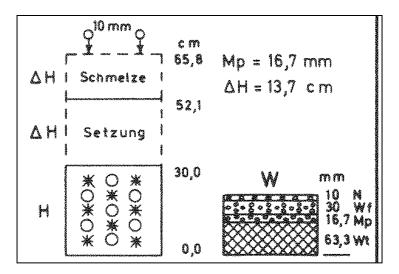
- → Analyse et la simplification de la méthode Bertle
- → Option SNOW-COMPACTION 3 implémentée dans LARSIM

Le bilan énergétique du manteau neigeux

- → Validation du bilan énergétique sous couvert forestier
- → Stratégie pour améliorer et assouplir l'implémentation dans LARSIM

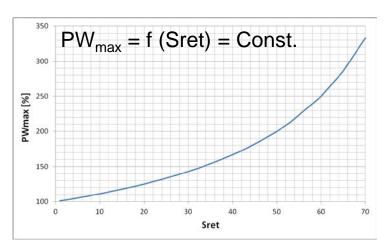
L'accumulation de neige / aspects complémentaires

- → Analyse de l'interception (et de la sublimation) de la neige par les couronnes d'arbres
- → Stratégie pour l'intégration dans LARSIM



Méthode Bertle

Situation de départ :


- La méthode Bertle (SNOW-COMPACTION 2) est très compliquée et peu transparente,
- ce qui rend difficile tout développement / toute modification (p. ex. intervention dans l'état de la neige)

Objectifs:

- Analyse de la méthode Bertle
- Simplification de la méthode Bertle
 (→ SNOW-COMPACTION 3)
- Simplifier les développements ultérieurs
- Permettre l'intervention directe dans l'état de la neige

La méthode Bertle

Principe de base :

Bilan énergétique par ex. les approches Knauf

Pluie heige

Bertle:

Compaction, maturation

Dégagement d'eau Manteau neigeux

Les paramètres les plus importants dans la méthode Bertle (simplifiée):

WÄ_{GS} [mm] Équivalent en eau de la neige (totale)

WÄ_{TS} [mm] Équivalent en eau de la neige sèche

PW [%] Rapport entre l'équivalent en eau totale et l'équivalent en eau de la neige

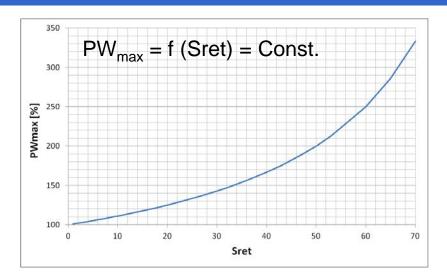
sèche $PW = 100 \frac{W \ddot{A}_{GS}}{W \ddot{A}_{TS}}$

PW_{max} [%] Maximum de l'équivalent en eau totale pour un équivalent en eau donné

de la neige sèche

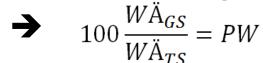
PW > PW_{max} neigeux → Dégagement d'eau à partir du manteau

La méthode Bertle


Les bases empiriques d'après Bertle (1966) :

$$PW_{max} = f(c1, c2, \rho_{TS}, \rho_{max} ...)$$

c1, c2 = f(Sret)


$$\dots \rightarrow PW_{max} = \frac{10000}{100 - Sret}$$

Compaction:

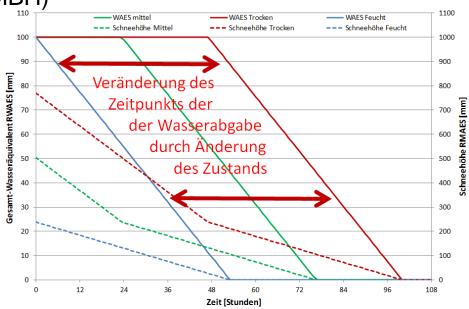
Donnée d'entrée	WÄ _{GS}	WÄ _{TS}
Fonte potentielle		-
Pluie	+	
Neige	+	+
(Re-)Sublimation évaporat./condensat.	+-	+-

Dégagement d'eau à partir du manteau neigeux

Lorsque PW > Pw_{max}

- → Dégagement d'eau
- → Réduction de WÄ_{GS}

→ Tous les autres param. (hauteur et densité de neige, ...) sont calculés sur cette base



La méthode Bertle

Résultats:

- SNOW-COMPACTION 2 et 3 fournissent des résultats pratiquement identiques (imprécisions dues aux arrondis)
- SNOW-COMPACTION 3 simplifie les adaptations futures (phénomène observé déjà en mettant en œuvre SCHNEEREGEN)
- SNOW-COMPACTION 3 permet une intervention ciblée dans l'état de la neige (ajustement externe via le fichier d'état MBH)
- → Le degré de maturité peut directement être géré viaWÄ_{GS}/WÄ_{TS}
- → On peut influer sur le moment du dégagement d'eau
- → Développement ultérieur potentiel

Synopsis

Les aspects considérés dans la modélisation de la neige avec LARSIM

L'accumulation de neige

→ Option SCHNEEREGEN (pluie neigeuse) implémentée dans LARSIM

Le compactage et le dégagement d'eau

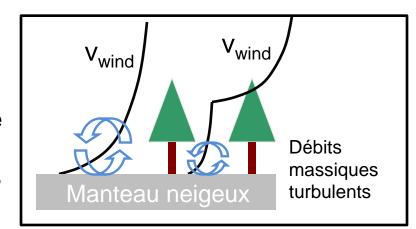
- → Analyse et la simplification de la méthode Bertle
- → Option SNOW-COMPACTION 3 implémentée dans LARSIM

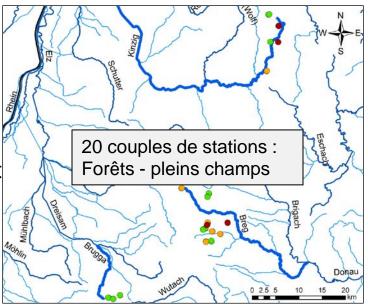
Le bilan énergétique du manteau neigeux

- → Validation du bilan énergétique sous couvert forestier
- → Stratégie pour améliorer et assouplir l'implémentation dans LARSIM

L'accumulation de neige / aspects complémentaires

- → Analyse de l'interception (et de la sublimation) de la neige par les couronnes d'arbres
- → Stratégie pour l'intégration dans LARSIM

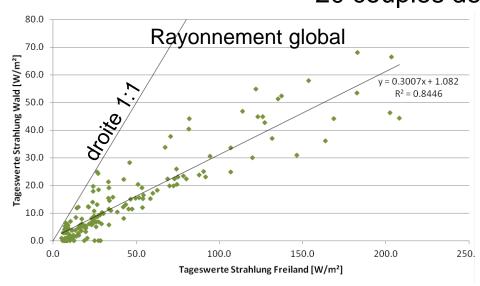

Le bilan énergétique sous couvert forestier

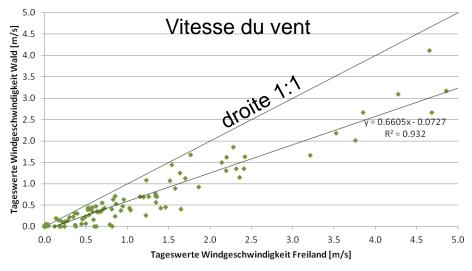

Situation de départ :

- Dans LARSIM, le bilan énergétique du manteau neigeux sous couvert forestier est modifié
- Réduction du rayonnement global, de la vitesse du vent
 - + modification du rayonnement à ondes longues
- A défaut de bibliographie internationale: Paramétrage interne des méthodes
- Données mesurées par l'Université de Fribourg sur de nombreux sites en Forêt Noire (rayonnement global et vent)

Objectifs:

- Vérifier les approches pour le ray. glob. et le vent
- Vérifier le paramétrage
- Propositions d'amélioration (projet)




Le bilan énergétique sous couvert

La réduction linéaire simple telle qu'implémentée dans LARSIM est-elle admissible?

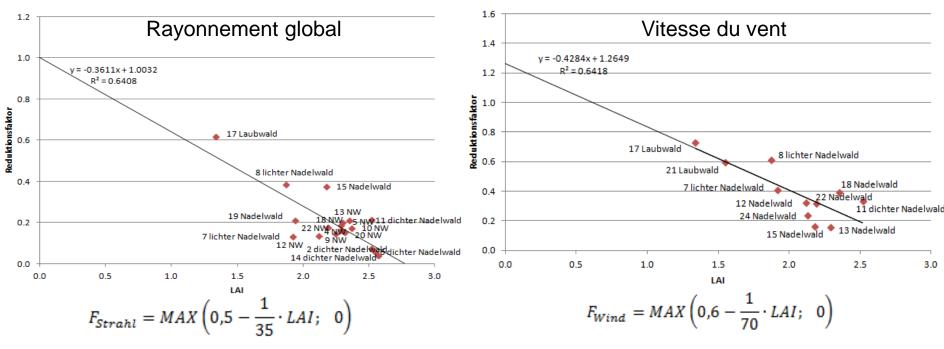
Forêt = pleins champs x facteur

20 couples de stations représentatifs :

→ Les facteurs de réduction linéaire sont admissibles dans LARSIM

$$RGlob_{Wald} = RGlob_{Freiland} \cdot F_{Strahl}$$

$$VWind_{Wald} = VWind_{Freiland} \cdot F_{Wind}$$



Le bilan énergétique sous couvert forestier

Y-a-t-il une relation linéaire entre le facteur de réduction et LAI?

- → Relation approximativement linéaire entre les facteurs et LAI
- → Différences nettes entre la forêt de feuillus et le forêt résineuse (en hiver)
- → La réduction du rayonnement glob. et du vent est généralement plus ou moins correcte
- → MAIS La réduction du vent est trop faible dans la forêt résineuse

Le bilan énergétique sous couvert forestier

En général:

La réduction du rayonnement global et du vent est bien reflétée par LARSIM

Problématique:

- F_{Wind} un peu trop élevé pour la forêt résineuse
- Le paramétrage fixe et interne à LARSIM rend l'adaptation plus difficile.
- Les facteurs de réduction dépendent du LANU.PAR utilisé

Proposition d'amélioration:

Paramètres individuels spécifiques au modèle (a0 et a1) pour:

```
F_{Strahl} = MAX(a0_{Strahl} - a1_{Strahl} \cdot LAI; \quad 0)
F_{Wind} = MAX(a0_{Wind} - a1_{Wind} \cdot LAI; \quad 0)
```

- → Compatibilité avec des LANU.PAR divers
- → Amélioration simple de F_{Wind} pour la forêt résineuse

Synopsis

Les aspects considérés dans la modélisation de la neige avec LARSIM

L'accumulation de neige

→ Option SCHNEEREGEN (pluie neigeuse) implémentée dans LARSIM

Le compactage et le dégagement d'eau

- → Analyse et la simplification de la méthode Bertle
- → Option SNOW-COMPACTION 3 implémentée dans LARSIM

Le bilan énergétique du manteau neigeux

- → Validation du bilan énergétique sous couvert forestier
- → Stratégie pour améliorer et assouplir l'implémentation dans LARSIM

L'accumulation de neige / aspects complémentaires

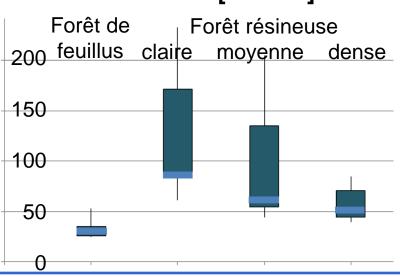
- → Analyse de l'interception (et de la sublimation) de la neige par les couronnes d'arbres
- → Stratégie pour l'intégration dans LARSIM


Situation de départ :

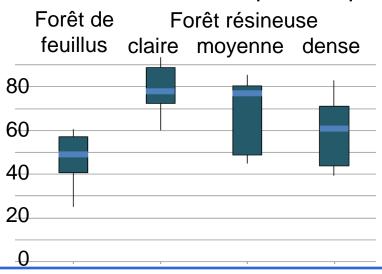
- LARSIM considère l'interception de la neige de la même manière que la pluie.
- La neige sur la couverture des couronnes des arbres et la sublimation à partir de là ne sont pas simulées de manière séparée.
- Le manteau neigeux n'est simulé que sous couvert forestier.
- Données mesurées par l'Université de Fribourg pour les couples de stations pleins champs - forêt en Forêt Noire

Objectifs:

- Vérifier l'approche LARSIM (pour la pluie)
- Pertinence de l'interception de la neige pour les sites typiques de moyenne montagne
- Déduire des propositions d'amélioration (projet)

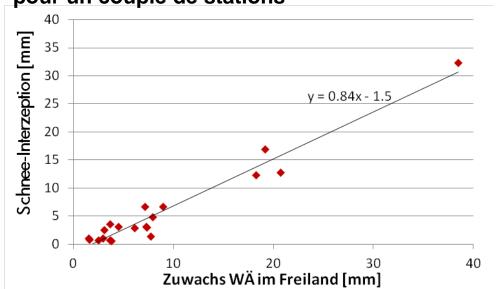


La rétention de la neige est accumulée par la couverture des couronnes.

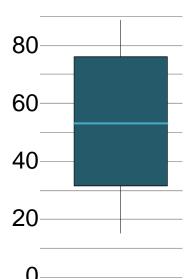

- Différence maximale pleins champs sous couvert forestier pendant la phase d'accumulation
- Indicateur de : l'interception maximale de la neige + sublimation à partir de la couverture des couronnes

Absolu [mm EE]

Relatif [% de l'EE_{pleins champs}]


L'interception de la neige par évènement (pas de temps journalier) :

L'interception de la neige calculée : « accroissement pleins champs » « accroissement sous couvert forestier »


• Seule la phase de l'accumulation est évaluée.

L'interception de la neige absolue par évènement [mm]

pour un couple de stations

L'interception de la neige relative par évènement pour l'ensemble des couples de stations et des évènements [%]

- → L'interception de la neige (spécifique à un évènement) peut être un multiple du maximum de l'interception de la pluie d'environ 2 mm (simulé par LARSIM)
- → Pourcentage de l'interception de la neige par rapport aux précipitations totales ~50%

Conclusions:

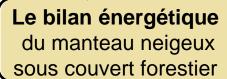
- LARSIM ne prend pas suffisamment en compte l'interception (de la pluie) pour représenter d'une manière adéquate l'effet de l'interception de la neige.
- L'interception de la neige influe significativement sur la dynamique nivale des sites forestiers
- Les données disponibles ne permettent guère de procéder à une différenciation plus précise des processus de sublimation, de glissement, d'égouttement etc..

Suites à donner / recommandations :

- Proposer une stratégie praticable sur la base des données évaluées et des modèles présentés au public
- Concerter les résultats, la pertinence et les priorités de LARSIMcommunauté des développeurs
- Eventuellement implémenter et valider la stratégie sur la base des données disponibles et d'autres modèles LARSIM

Résumé

Les aspects considérés dans la modélisation de la neige avec LARSIM


Méthodes existantes :

- Analyse / Validation
- Amélioration

Méthodes supplémentaires :

- Pertinence
- Adapter à LARSIM

La méthode
Bertle
de compaction du
manteau neigeux

L'interception
et la sublimation par
les couronnes d'arbres

Le mélange pluieneige dans la formation du manteau neigeux

Analyse

à l'aide des données de mesure Rain-on-Snow de l'Université de Fribourg (Dr. Pohl)

Stratégie de simplification

Stratégie pour l'amélioration voire la nouvelle intégration dans LARSIM

Stratégie de mise en œuvre

Option SNOW-COMPACTION 3 implémentée dans LARSIM

Option SCHNEEREGEN (pluie neigeuse) implémentée dans **LARSIM**

Résumé

L'option SCHNEEREGEN (pluie neigeuse) :

- Application recommandée
- Recommandations:

Tspann_Sr ~ 4 °C

Tmit_Sr est inférieur d'un degré à l'ancienne TGr

• Le fait problématique que TGr / Tspann_Sr est variable dans le temps persiste.

L'option SNOW-COMPACTION 3 :

- Application recommandée
- Développements futurs sur la base de SNOW-COMPACTION 3 (cette dernière ayant sensiblement été simplifiée)
- SNOW-COMPACTION 3 = Condition préalable à l'ajustement de l'état de la neige (degré de maturité, début du dégagement d'eau)

Résumé

Le bilan énergétique sous couvert forestier :

- L'approche implémentée dans LARSIM est généralement appropriée.
- Proposition : Permettre la gestion des fonctions via les paramètres individuels
 - Améliorer le paramétrage de F_{Wind} sous couvert résineux
 - Compatibilité avec les LANU.PAR divers (désenchevêtrer le calcul de l'évaporation)
- Concertation au sein de la communauté des développeurs de LARSIM et au sein du sous-groupe de travail Neige

L'interception de la neige :

- L'interception de la pluie par LARSIM est insuffisante pour l'interception de la neige
- L'interception (et la sublimation) de la neige sont significatives pour la dynamique nivale des
- sites forestiers
- Proposer une stratégie praticable
- Concertation au sein de la communauté des développeurs de LARSIM et au sein du sous-groupe de travail Neige

Avec nos remerciements particuliers au Docteur S. Pohl (Université de Fribourg) pour la mise à disposition des données nivométriques.

MERCI pour votre attention!

DANKE für ihre Aufmerksamkeit!

