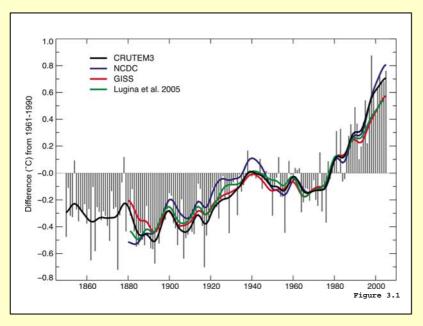
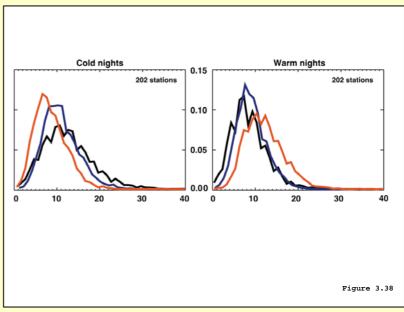
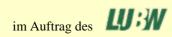
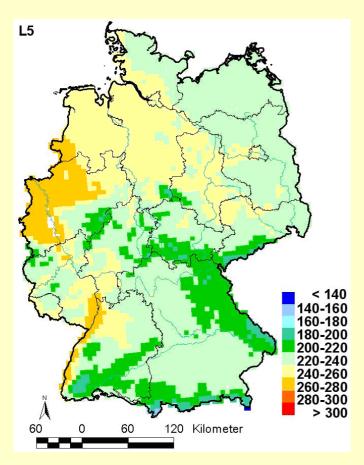
Dynamisierung der Vegetationsperiode für LARSIM


Dr. Hannaleena Pöhler (UDATA)

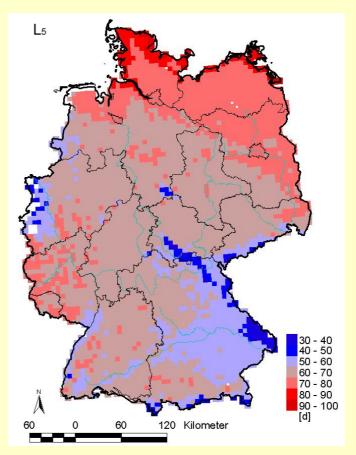

- Hintergrund und Zielsetzung
- 2. Umsetzung
- 3. Weitere Arbeitsschritte und Ausblick

Hintergrund und Zielsetzung

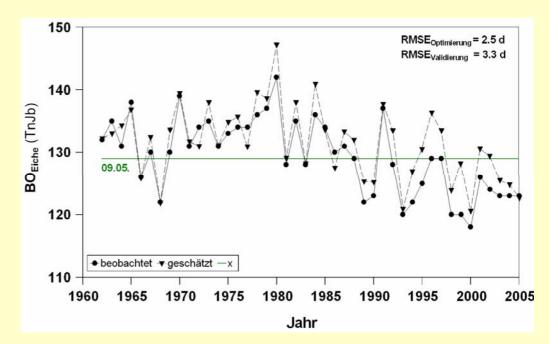



Quelle: IPCC 2007

Klimawandel → Temperaturanstieg → Verschiebung der Vegetationsperiode

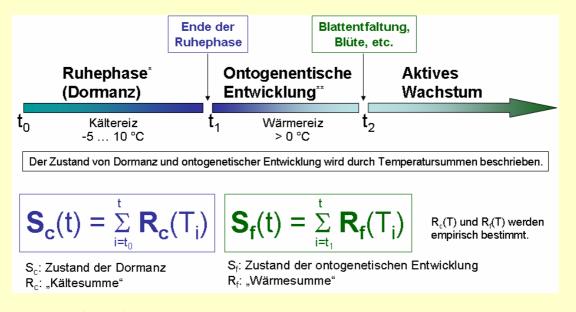


Mittlere Länge der thermischen Vegetationsperiode in Deutschland 1961-2000 (Chmielewski et al. 2007)

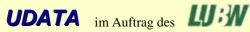

Veränderung der Länge der thermischen Vegetationsperiode in Deutschland (Szenario A2, REMO, 2071-2100 gegenüber Kontrolllauf 1961-1990, Chmielewski et al. 2007)

Umsetzung im Modell

- Herleitung von Algorithmen
 - Fichte, Kiefer,Buche, Eiche
 - Apfel, Süßkirsche
 - Verschiedene
 Getreidearten,
 Grasarten,
 Hackfrüchte



- Bisher für Sachsen
- Übertragung auf Baden-Württemberg



Methodik

Quelle: Chmielewski et al. 2008

Methodik

DynPhen 1

$$\begin{split} S_f(t) &= \sum_{i=t_1}^t R_f(T_i), \ wobei \ S_f(t_2) \coloneqq F^* \\ R_f(T_i) &= 0, \qquad wenn \ T_i \le T_{Bf} \\ R_f(T_i) &= \frac{28.4}{1 + \exp\left(-0.185(T_i - T_{Bf} - 18.4)\right)}, \ wenn \ T_i > T_{Bf} \end{split}$$

DynPhen 3

$$S_f(t) = \sum_{i=t_1}^t R_f(T_i)$$
 wobei $S_f(t_2) := F *$

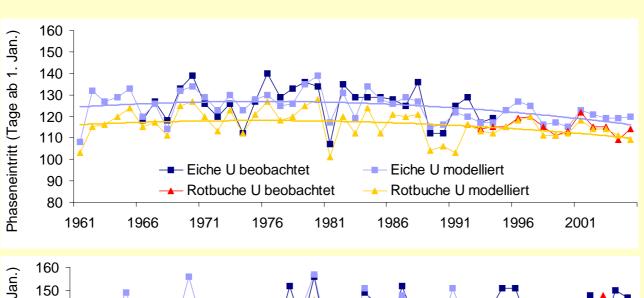

mit $S_f(t_2) \ge F *$
 $R_f(T_i) = 0$ wenn $T_i \le T_{Bf}$
 $R_f(T_i) = T_i - T_{Rf}$ wenn $T_i > T_{Rf}$

DynPhen 2

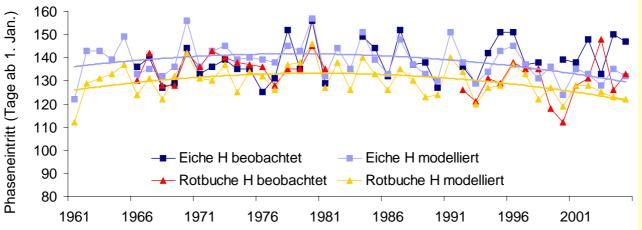
$$\begin{split} S_c(t) &= \sum_{i=t_0}^t R_c(T_i), \ wobei \ S_c(t_1) =: C^* \\ S_f(t) &= \sum_{i=t_1}^t R_f(T_i), \ wobei \ S_f(t_2) := F^* \\ \text{wobei gilt:} \quad F^* &= a \exp\left(b \, C^*\right) \\ R_c(T_i) &= 0, \qquad wenn \ T_i \leq -3.4 \ oder \ T_i \geq 10.4 \\ R_c(T_i) &= \frac{T_i + 3.4}{T_{Bc} + 3.4} \qquad wenn \ -3.4 < T_i \leq T_{Bc} \\ R_c(T_i) &= \frac{T_i - 10.4}{T_{Bc} - 10.4} \qquad wenn \ T_{Bc} < T_i < 10.4 \\ R_f(T_i) &= 0, \qquad wenn \ T_i \leq T_{Bf} \\ R_f(T_i) &= \frac{28.4}{1 + \exp\left(-0.185(T_i - T_{Bf} - 18.4)\right)}, \ wenn \ T_i > T_{Bf} \end{split}$$

Methodik

Winterweizen												
t _z	1992-2005											
n	9											
T ₀₀	11,3 °C; s = 0,7 °C											
ВВСН	00 Aussaat	10 Aufgang	31 Schoss- beginn	51 Beginn Ährensch.	61 Beginn Blüte	65 Ende Blüte	75 Milchreife	83 Teigreife	87 Gelbreife	Ernte (Vollreife)		
t _n	277,7	293,4	117,1	151,3	-	-	183,3	-	202,5	221,3		
d	05.10.	20.10.	27.04.	31.05.	-	-	02.07.	-	22.07.	09.08.		
s(t _n)	9,6	11,1	11,9	5,3	-	-	7,7	-	6,8	7,5		
T _B =6°C	Thermal-Time-Model											
F*	-	119,0	129,7	369,1	-	-	703,4	-	921,6	1150,1		
s	-	26,9	42,3	56,8	-	-	93,8	-	61,8	51,3		
MAE	-	4,7	5,9	4,8	-	-	6,4	-	5,3	5,7		



Modellvalidierung Beispiel: Brandis, typische Fruchtfolge


Jahr	Fruchtart (phänologische Phase)	Eintritt der phänologischen Phase (beobachtet)	Eintritt der phänologischen Phase (modeliert)	MAE _C	MAE _{Mod}
1997	Sommerweizen	114	118	-	4 Tage
1998	Winterroggen	99	92	7,0 Tage	7 Tage
1999	Wintergerste	102	101	7,2 Tage	1 Tag
2000	Erbsen	111	-	-	-
2001	Winterweizen	119	121	5,9 Tage	2 Tage
2002	Wintergerste	112	90	7,2 Tage	22 Tage
2003	Raps	120	124	4,6 Tage	4 Tage
2004	Winterweizen	118	109	5,9 Tage	9 Tage
2005	Sommergerste	151	145	3,0 Tage	6 Tage
2006	Raps	125	129	4,6 Tage	4 Tage

Modellvalidierung (sächsische Klimaregionen)

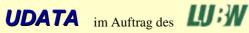
Sächs. **Tiefland**

Erzgebirge

geplante Umsetzung für LARSIM

LARSIM: 16 Landnutzungsklassen

- Siedlung dicht, Siedlung locker, versiegelt, unbewachsener Boden, Wasser
 - → keine dynamisierten Vegetationsperioden
- Acker, Grünland intensiv, Feuchtflächen, Grünland extensiv, Windwurf
 - \rightarrow DynPhen 3
- Weinbau, Obstbau, Nadelwald, Laubwald, Mischwald
 - \rightarrow DynPhen 1



Weitere Arbeitsschritte und Ausblick

- Programmierung in LARSIM
- Testsimulationen, ggf. Nachkalibrierung
- Uberprüfung der für Sachsen abgeleiteten Algorithmen für andere Bundesländer
- genauere Aufteilung von Acker- und Forstflächen nach konkret angebauten Kulturarten
- Implementierung weiterer wichtiger Kulturarten

Vielen Dank für die Aufmerksamkeit!

